
DATA MANAGEMENT FOR NEUROIMAGING

👩‍💻👨‍💻

WITH DATALAD
Adina Wagner

 ,

Institute of Neuroscience and Medicine (INM-7)

Research Center Jülich

Slide sources:

Slide archive:

@AdinaKrik

Psychoinformatics lab

https://github.com/datalad-handbook/datalad-course/
doi.org/10.5281/zenodo.6880616

2

https://twitter.com/AdinaKrik
http://psychoinformatics.de/
https://github.com/datalad-handbook/datalad-course/
https://doi.org/10.5281/zenodo.6880616

COMMON PROBLEMS IN SCIENCE
You write a paper & stay up late to generate good-looking figures,
but you have to
tweak many parameters and display options.
The next morning, you have no idea

which parameters produced which
figures, and which of the figures fit to what you
report in the paper.

Im
ag

e
cr

ed
it

: I
llu

st
ra

ti
o

n
 a

d
ap

te
d

 fr
o

m
 S

cr
ib

er
ia

 a
n

d
 T

h
e

Tu
ri

n
g

W
ay

3

COMMON PROBLEMS IN SCIENCE
Your research project produces phenomenal results, but your
laptop, the only

place that stores the source code for the
results, is stolen or breaks

Im
ag

e
cr

ed
it

: h
tt

p
s:

//
co

.p
in

te
re

st
.c

o
m

/p
in

/5
5

1
1

2
8

0
7

3
1

2
1

4
5

1
1

3
9

//
im

gc
re

d
it

>

4

COMMON PROBLEMS IN SCIENCE
A graduate student complains that a research idea does not work.
Their

supervisor can't figure out what the student did and how,
and the student can't
sufficiently explain their approach
(data, algorithms, software).
Weeks of

discussion and mis-communication ensues because the
supervisor can't first-hand
explore or use the students project.

Im
ag

e
cr

ed
it

: h
tt

p
:/

/p
h

d
co

m
ic

s.
co

m
/c

o
m

ic
s.

p
h

p
?f

=
1

6
9

3

5

COMMON PROBLEMS IN SCIENCE
You wrote a script during your PhD that applied a specific
method to a dataset.

Now, with new data and a new project, you
try to reuse the script, but forgot how
it worked.

Im
ag

e
cr

ed
it

: h
tt

p
:/

/p
h

d
co

m
ic

s.
co

m
/c

o
m

ic
s.

p
h

p
?f

=
1

6
9

3

6

COMMON PROBLEMS IN SCIENCE
You try to recreate results from another lab's published paper.
You base your re-
implementation on everything reported in their paper,
but the results you obtain

look nowhere like the original.

Im
ag

e
cr

ed
it

: h
tt

p
:/

/p
h

d
co

m
ic

s.
co

m
/c

o
m

ic
s.

p
h

p
?f

=
1

6
9

3

7

COMMON OLD PROBLEMS IN SCIENCE
All these problems were paraphrased from

Buckheit & Donoho, 1995

8

https://git.its.aau.dk/CLAAUDIA/teach_reproducibility/raw/commit/dbea465c0d10bca50b0cca23fd93afd0ffea08dc/litt/Wavelab%20and%20reproducible%20research.pdf

can help

with small or large-scale

data management

DataLad Free,

open source,

command line tool & Python API

Halchenko, Meyer, Poldrack, ... & Hanke, M. (2021).
DataLad: distributed system for joint management of code, data, and their relationship.
Journal of Open Source Software, 6(63), 3262.

9

https://www.datalad.org/

EXAMPLES OF WHAT DATALAD CAN BE USED FOR:
Publish or consume datasets
via GitHub, GitLab, OSF, the European Open
Science Cloud, or similar services

10

EXAMPLES OF WHAT DATALAD CAN BE USED FOR:
Behind-the-scenes infrastructure component for data transport and
versioning
(e.g., used by ,
 ,
the

,
)
OpenNeuro brainlife.io Canadian Open

Neuroscience Platform (CONP) CBRAIN

11

https://openneuro.org/
https://brainlife.io/
https://conp.ca/
https://mcin.ca/technology/cbrain/

EXAMPLES OF WHAT DATALAD CAN BE USED FOR:
Creating and sharing reproducible, open science: Sharing data, software, code,
and provenance

12

EXAMPLES OF WHAT DATALAD CAN BE USED FOR:
Creating and sharing reproducible, open science: Sharing data, software, code,
and provenance

13

EXAMPLES OF WHAT DATALAD CAN BE USED FOR:
Central data management and archival system

14

CORE FEATURES:

Code for hands-on:

Joint version control (,
): version control data & software alongside
your code

Git git-annex

Provenance capture:
Create and share machine-readable, re-executable
provenance records for reproducible, transparent, and FAIR research
decentral data transport mechanisms:
Install, share and collaborate on
scientific projects; publish,
upgrade, and retrieve their contents in a streamlined
fashion on demand,
and distribute files in a decentral network on the services or
infrastructures
of your choice

handbook.datalad.org

15

https://git-scm.com/
https://git-annex.branchable.com/
https://handbook.datalad.org/

PREREQUISITES: TERMINAL
DataLad can be used from the command line

datalad create mydataset

... or with its Python API

import datalad.api as dl

dl.create(path="mydataset")

... and other programming languages can use it via system call

in R

> system("datalad create mydataset")

16

PREREQUISITES: USING DATALAD
Every DataLad command consists of a main
command followed by a sub-command. The main
and the sub-command can have options.

Example (main command, subcommand, several subcommand options):

Use --help to find out more about any (sub)command
and its options, including detailed
description and examples (q to close). Use -h to get a short
overview of all options

$ datalad save -m "Saving changes" --recursive

$ datalad save -h

 Usage: datalad save [-h] [-m MESSAGE] [-d DATASET] [-t ID] [-r] [-R LEVELS]

 [-u] [-F MESSAGE_FILE] [--to-git] [-J NJOBS] [--amend]

 [--version]

 [PATH ...]

Use '--help' to get more comprehensive information.

17

EVERYTHING HAPPENS IN DATALAD DATASETS

.... or transform existing directories into datasets

.... or get datasets
from other places

create new, empty datasets to populate...

% datalad create

% datalad create -f

% datalad clone

Look and feel like a directory on your computer
content agnostic
no custom data structures

Terminal view

File viewer

18

DATASET = GIT/GIT-ANNEX REPOSITORY
version control files regardless of size or type

save

changes

modify the

dataset

version 1

version 2

version 3

% datalad save

Stay flexible:

Non-complex DataLad core API (easy for data management novices)
Pure Git or git-annex commands (for regular Git or git-annex users, or to use
specific functionality)

19

EXHAUSTIVE TRACKING
The building blocks of a scientific result are rarely static

Analysis code evolves

(Fix bugs, add functions,
refactor, ...)

Im
ag

e
cr

ed
it

: B
as

ed
 o

n
 P

ile
d

 H
ig

h
er

 a
n

d
 D

ee
p

er

1

5
3

1

20

https://phdcomics.com/comics/archive_print.php?comicid=1531

EXHAUSTIVE TRACKING
The building blocks of a scientific result are rarely static

Data changes

(errors are fixed, data is extended,

naming standards change, an analysis

requires only a subset of your data...)

Im
ag

e
cr

ed
it

: P
ile

d
 H

ig
h

er
 a

n
d

 D
ee

p
er

1
3

2
3

21

https://phdcomics.com/comics/archive_print.php?comicid=1323

EXHAUSTIVE TRACKING
The building blocks of a scientific result are rarely static

Data changes (for
real)

(errors are fixed, data is extended,

naming standards change, ...)

22

EXHAUSTIVE TRACKING
"Shit, which version of which script produced these outputs from which version
of

what data... and which software version?"

Im
ag

e
cr

ed
it

: C
C

-B
Y

 S
cr

ib
er

ia
 a

n
d

 T
h

e
Tu

ri
n

g
W

ay

23

https://the-turing-way.netlify.app/reproducible-research/rdm.html

1. TRANSPARENCY - FOR DATA
Once you track changes to data with version control tools,
you can find out why it
changed, what has changed, when it changed,
and which version of your data was

used at which point in time.

24

DIGITAL PROVENANCE
= "The tools and processes used to create a
digital file, the responsible entity,
and when and where the process
events occurred"

Have you ever saved a PDF to read later onto your computer, but forgot
where
you got it from? Or did you ever find a figure in your project,
but forgot which
analysis step produced it?

25

PROVENANCE AND REPRODUCIBILITY
datalad run wraps around anything expressed in a command
line call and saves

the dataset modifications resulting from the execution

save all
modifications
of the dataset

1

2

2

1

datalad run -m "did XY"

26

PROVENANCE AND REPRODUCIBILITY
datalad rerun repeats captured executions.

If the outcomes
differ, it saves a new state of them.

1

2

2

1

datalad run -m "did XY"

save all
modifications
of the dataset

rerun a

previous
 command

27

SEAMLESS DATASET NESTING & LINKAGE

Paper
B

Raw
data

Analysis
A

Paper
A

Analysis
B

Preprocessed

Nest modular datasets to create a linked hierarchy of datasets,
and enable recursive operations throughout the hierarchy

Im
ag

e
cr

ed
it

: P
o

lin
e

et
 a

l.,
 2

0
1

1

28

https://www.frontiersin.org/articles/10.3389/fninf.2012.00009/full

SEAMLESS DATASET NESTING & LINKAGE

1

1

$ datalad clone --dataset . http://example.com/ds inputs/rawdata

$ git diff HEAD~1

diff --git a/.gitmodules b/.gitmodules

new file mode 100644

index 0000000..c3370ba

--- /dev/null

+++ b/.gitmodules

@@ -0,0 +1,3 @@

+[submodule "inputs/rawdata"]

+ path = inputs/rawdata

+ datalad-id = 68bdb3f3-eafa-4a48-bddd-31e94e8b8242

+ datalad-url = http://example.com/importantds

diff --git a/inputs/rawdata b/inputs/rawdata

new file mode 160000

index 0000000..fabf852

--- /dev/null

+++ b/inputs/rawdata

@@ -0,0 +1 @@

+Subproject commit fabf8521130a13986bd6493cb33a70e580ce8572

29

PLENTY OF DATA, BUT LITTLE DISK-USAGE
Cloned datasets are lean.
"Meta data" (file names, availability) are present, but
no file content:

$ datalad clone git@github.com:psychoinformatics-de/studyforrest-data-phase2.git

 install(ok): /tmp/studyforrest-data-phase2 (dataset)

 $ cd studyforrest-data-phase2 && du -sh

 18M	.

files' contents can be retrieved on demand:

$ datalad get sub-01/ses-movie/func/sub-01_ses-movie_task-movie_run-1_bold.nii.gz

 get(ok): /tmp/studyforrest-data-phase2/sub-01/ses-movie/func/sub-01_ses-movie_task-movie_run-1

Have access to more data on your computer than you have disk-space:

eNKI dataset (1.5TB, 34k files):

$ du -sh

1.5G	 .

HCP dataset (~200TB, >15 million files)

$ du -sh

48G	.

30

PLENTY OF DATA, BUT LITTLE DISK-USAGE
Drop file content that is not needed:

$ datalad drop sub-01/ses-movie/func/sub-01_ses-movie_task-movie_run-1_bold.nii.gz

drop(ok): /tmp/studyforrest-data-phase2/sub-01/ses-movie/func/sub-01_ses-movie_task-movie_run-1_

When files are dropped, only "meta data" stays behind, and they can be re-
obtained on demand.

dl.get('input/sub-01')

[really complex analysis]

dl.drop('input/sub-01')

31

THERE ARE TWO VERSION CONTROL TOOLS AT WORK - WHY?
Git does not handle large files well.

32

THERE ARE TWO VERSION CONTROL TOOLS AT WORK - WHY?

Git does not handle large files well.

And repository hosting services refuse to handle large files:

git-annex to the rescue! Let's take a look how it works

33

GIT VERSUS GIT-ANNEX

Git
- dataset history (commit messages,
 run records)
- All files + content committed into Git
 (useful with code, text, ...)
- File identity information of all annexed
 files (file name, identity hash, storage
 locations where to retrieve it from)

git-annex
- contents of annexed files
- organized in the "annex" or "object tree"
 of the dataset

34

DATASET INTERNALS
Where the filesystem allows it, annexed files are symlinks:

(PS: especially useful in datasets with many identical files)

The symlink reveals this internal data organization based on identity hash:

$ ls -l sub-02/func/sub-02_task-oneback_run-01_bold.nii.gz

lrwxrwxrwx 1 adina adina 142 Jul 22 19:45 sub-02/func/sub-02_task-oneback_run-01_bold.nii.gz ->

../../.git/annex/objects/kZ/K5/MD5E-s24180157--aeb0e5f2e2d5fe4ade97117a8cc5232f.nii.gz/MD5E-s24180

--aeb0e5f2e2d5fe4ade97117a8cc5232f.nii.gz

$ md5sum sub-02/func/sub-02_task-oneback_run-01_bold.nii.gz

aeb0e5f2e2d5fe4ade97117a8cc5232f sub-02/func/sub-02_task-oneback_run-01_bold.nii.gz

The (tiny) symlink instead of the (potentially large) file content is
committed -
version controlling precise file identity without checking contents into Git

File contents can be shared via almost all
standard infrastructure. File availability
information is a decentral network.
A file can exist in multiple different locations.

$ git annex whereis code/nilearn-tutorial.pdf

whereis code/nilearn-tutorial.pdf (2 copies)

 cf13d535-b47c-5df6-8590-0793cb08a90a -- [datalad]

 e763ba60-7614-4b3f-891d-82f2488ea95a -- jovyan@jupyter-adswa:~/my-analysis [here]

 datalad: https://raw.githubusercontent.com/datalad-handbook/resources/master/nilearn-tutorial.pd

35

GIT VERSUS GIT-ANNEX
Data in datasets is either stored in Git or git-annex

By default, everything is annexed.

Useful background information for demo later. Read
 for details

Two consequences:
Annexed contents are not available right after

cloning,
only content identity and availability
information (as they are stored in Git).
Everything
that is annexed needs to be retrieved with
datalad get
from whereever it is stored.

Files stored in Git are modifiable, annexed files
are protected against accidental modifcations

Git git-annex

handles small files well (text, code) handles all types and sizes of files well

file contents are in the Git history
and will be shared upon git/datalad push file contents are in the annex. Not necessarily shared

Shared with every dataset clone Can be kept private on a per-file level when sharing
the dataset

Useful: Small, non-binary, frequently modified, need-to-be-accessible (DUA,
README) files

Useful: Large files, private files

this handbook chapter

36

http://handbook.datalad.org/en/latest/basics/101-115-symlinks.html

GIT VERSUS GIT-ANNEX
Users can decide which files are annexed:

Pre-made run-procedures, provided by DataLad (e.g., text2git, yoda)
or
created and shared by users
()
Self-made configurations in .gitattributes (e.g., based on file type,
file/path
name, size, ...;)
Per-command basis (e.g., via datalad save --to-git)

Tutorial

rules and examples

37

http://handbook.datalad.org/en/latest/basics/101-124-procedures.html
http://handbook.datalad.org/en/latest/basics/101-123-config2.html#gitattributes

COMPUTATIONAL PROVENANCE
The datalad-container extension gives DataLad commands to register software containers
as "just another file" to your
dataset, and datalad containers-run analysis inside the container,
capturing software as additional
provenance

save all
modifications
of the dataset

unlock
output files

for modification
--output

get input data
--input

1

2

2

1

link input, code, output, and software with
datalad containers-run

datalad containers-run

get and use registered software
container for computation
--container-name

</>

38

SHARING DATASETS

Your dataset

work stations
& servers

Repository hosting
services

Third party
storage providers

39

Apart from local computing infrastructure (from private laptops to computational clusters),
datasets can be hosted in major third party
repository hosting and cloud storage services.
More info: Chapter on .Third party infrastructure

40

http://handbook.datalad.org/en/latest/basics/basics-thirdparty.html

SERVICES

make the difference for advertisment, discovery, convenience
but imply gigantic dependencies
often impossible to "take over"

Make sure data/metadata are self-contained

to facilitate/enable transition to another service

41

SECURITY AND RELIABILITY - FOR DATA
Decentral version control for data integrates with a variety of services
to let you

store data in different places - creating a resilient network for data

"In defense of decentralized Research Data Management", doi.org/10.1515/nf-2020-0037
42

https://doi.org/10.1515/nf-2020-0037

COLLABORATION
Teamscience on more than code:

43

EXHAUSTIVE TRACKING OF RESEARCH COMPONENTS

Well-structured datasets (using community standards), and portable
computational environments — and their evolution — are the precondition for

reproducibility

turn any directory into a dataset

with version control

% datalad create <directory>

save a new state of a dataset with

file content of any size

% datalad save

44

CAPTURE COMPUTATIONAL PROVENANCE

Which data was needed at which version, as input into which code, running with
what parameterization in which
computional environment, to generate an

outcome?

execute any command and capture its output
while recording all input versions too

% datalad run --input ... --output ... <command>

45

EXHAUSTIVE CAPTURE ENABLES PORTABILITY

Precise identification of data and computational environments
combined with
provenance records form a comprehensive and portable
data structure, capturing

all aspects of an investigation.

transfer data and metadata to other sites and services

with fine-grained access control for dataset components

% datalad push --to <site-or-service>

46

REPRODUCIBILITY STRENGTHENS TRUST

Outcomes of computational transformations can be validated by authorized 3rd-
parties. This enables audits, promotes accountability, and streamlines automated

"upgrades" of outputs

obtain dataset (initially only identity,

availability, and provenance metadata)

% datalad clone <url>

immediately actionable provenance records

full abstraction of input data retrieval

% datalad rerun <commit|tag|range>

47

ULTIMATE GOAL: (RE-)USABILITY

Verifiable, portable, self-contained data structures that track all aspects of an
investigation exhaustively can be (re-)used as modular components in larger

contexts — propagating their traits

declare a dependency on another dataset and

re-use it a particular state in a new context

% datalad clone -d <superdataset> <url> <path-in-dataset>

48

BIG DATA

49

FAIRLY BIG: SCALING UP
Objective: Process the UK Biobank (imaging data)

76 TB in 43 million files in total
42,715 participants contributed personal health data
Strict DUA
Custom binary-only downloader
Most data records offered as (unversioned) ZIP files

50

CHALLENGES
Process data such that

Results are computationally reproducible (without the original compute
infrastructure)
There is complete linkage from results to an individual data record download
It scales with the amount of available compute resources

Data processing pipeline

Compiled MATLAB blob
1h processing time per image, with 41k images to process
1.2 M output files (30 output files per input file)
1.2 TB total size of outputs

51

FAIRLY BIG SETUP

Exhaustive tracking

extension downloads, transforms & track the evolution of the complete data

release
in DataLad datasets
Native and BIDSified data layout (at no additional disk space usage)
Structured in 42k individual datasets, combined to one superdataset
Containerized pipeline in a software container
Link input data & computational pipeline as dependencies

datalad-ukbiobank

Wagner, Waite, Wierzba et al. (2021). FAIRly big: A framework for computationally reproducible processing of large-scale data.

52

https://github.com/datalad/datalad-ukbiobank
https://www.nature.com/articles/s41597-022-01163-2

FAIRLY BIG WORKFLOW

portability
Parallel processing: 1 job = 1 subject
(number of concurrent jobs capped at the capacity of the
compute cluster)
Each job is computed in a ephemeral (short-lived) dataset clone, results are pushed back:
Ensure
exhaustive tracking &
portability during computation
Content-agnostic persistent (encrypted) storage (minimizing storage and inodes)
Common data representation in secure environments

Wagner, Waite, Wierzba et al. (2021). FAIRly big: A framework for computationally reproducible processing of large-scale data.

53

https://www.nature.com/articles/s41597-022-01163-2

FAIRLY BIG PROVENANCE CAPTURE

Provenance
Every single pipeline execution is tracked
Execution in ephemeral workspaces ensures results
individually reproducible without HPC
access

Wagner, Waite, Wierzba et al. (2021). FAIRly big: A framework for computationally reproducible processing of large-scale data.

54

https://www.nature.com/articles/s41597-022-01163-2

FAIRLY BIG MOVIE
Reproducible processing of 41,180 brain images from the UK Biobank with DataLadReproducible processing of 41,180 brain images from the UK Biobank with DataLad

Two computations on clusters of different scale (small cluster, supercomputer).
Full video:
Two full (re-)computations, programmatically comparable, verifiable,
reproducible -- on any system with data access

https://youtube.com/datalad

55

https://www.youtube.com/watch?v=UsW6xN2f2jc
https://youtube.com/datalad

TAKE HOME MESSAGES
Data deserves version control

It changes and evolves just like code
Science, especially on big data, relies on good data management

But effort pays off: Increased transparency, better reproducibility, easier
accessibility,
efficiency through automation and collaboration, streamlined
procedures for synchronizing and updating your work, ...

DataLad can help with some things
Have access to more data than you have disk space
Who needs short-term memory when you can have automatic provenance
capture?
Link versioned data to your analysis at no disk-space cost
...

56

HELP?!
If you have a question, you can reach out for help any time:

Reach out to to the DataLad team via
 (free, decentralized communication app, no app needed).
We run a weekly Zoom

office hour (Thursday, 4pm Berlin time) from this room as well.
the development repository on GitHub

Reach out to the user community with
A question on
with a datalad tag

Find more user tutorials or workshop recordings
On DataLad's YouTube channel
In the DataLad Handbook
In the DataLad RDM course
In the Official API documentation

Matrix

(github.com/datalad/datalad)

neurostars.org

(www.youtube.com/channel/datalad)

(handbook.datalad.org)

(psychoinformatics-de.github.io/rdm-course)
(docs.datalad.org)

57

https://matrix.to/#/!NaMjKIhMXhSicFdxAj:matrix.org?via=matrix.waite.eu&via=matrix.org&via=inm7.de
https://github.com/datalad/datalad
https://neurostars.org/
https://www.youtube.com/channel/datalad
http://handbook.datalad.org/en/latest/
https://psychoinformatics-de.github.io/rdm-course/
http://docs.datalad.org/

ACKNOWLEDGEMENTS
Software
Joey Hess (git-annex)
The DataLad team &
contributors

Illustrations
The Turing Way

project & Scriberia

Science

 &

Countless open

scientists

Funders

Collaborators

Psychoinformatics

Lab INM-7

58

https://www.psychoinformatics.de/
https://www.fz-juelich.de/en/inm/inm-7

LET'S CLEAN UP
Removing files from a version control system can be unintuitive and harder
than expected
Let's clean up!

59

DROP & REMOVE
datalad drop removes
annexed file contents from a local dataset annex and frees up disk
space.
It is the antagonist of get (which can get
files and subdatasets).

$ datalad drop inputs/sub-02

drop(ok): input/sub-02/func/sub-02_task-oneback_run-01_bold.nii.gz (file)

drop(ok): input/sub-02 (directory)

action summary:

 drop (ok: 2)

But: Default safety checks require that dropped files can be re-obtained
to prevent accidental
data loss. git annex whereis reports all registered locations
of a file's content
drop does not only operate on individual annexed files,
but also directories, or globs, and it can
uninstall subdatasets:

$ datalad drop --what all input

uninstall(ok): input (dataset)

60

DROP & REMOVE
datalad remove removes complete dataset or dataset
hierarchies and leaves no trace of them. It
is the antagonist to
clone.

The command operates outside of the to-be-removed dataset!

$ datalad remove inputs

uninstall(ok): inputs (dataset)

But: Default safety checks require that
it could be re-cloned in its most recent version from
other places,
i.e., that there is a sibling that has all revisions that
exist locally datalad siblings
reports all
registered siblings of a dataset.

61

DROP & REMOVE
datalad drop refuses to
remove annexed file contents if it can't verify that
datalad get could re-
retrieve it

$ datalad drop figures/sub-02_mean-epi.png

drop(error): figures/sub-02_mean-epi.png (file) [unsafe; Could only verify the existence of 0 out of 1 necessar

 copy; (Use --reckless availability to override this check, or

 adjust numcopies.)]

Adding --reckless availability overrides this check

$ datalad drop figures/sub-02_mean-epi.png --reckless availability

Be mindful that drop will only operate on
the most recent version of a file - past versions may
still exist afterwards unless you drop them
specifically. git annex unused can identify all files that
are left behind

62

DROP & REMOVE
datalad remove refuses to remove
datasets without an up-to-date sibling

$ datalad remove -d my-analysis

uninstall(error): . (dataset) [to-be-dropped dataset has revisions that are not available at a

 sibling. Use `datalad push --to ...` to push these before dropping the loca

 or ignore via `--reckless availability`. Unique revisions: ['main']]

Adding --reckless availability overrides this check

$ datalad remove -d my-analysis --reckless availability

63

REMOVING WRONGLY
Removing datasets the wrong way causes chaos
and leaves an usuable dataset corpse behind:

$ rm -rf local-dataset

rm: cannot remove 'local-dataset/.git/annex/objects/Kj/44/MD5E-s42--8f008874ab52d0ff02a5bbd0174ac95e.txt/

MD5E-s42--8f008874ab52d0ff02a5bbd0174ac95e.txt': Permission denied

The dataset can't be fixed, but to remove the corpse chmod (change file mode bits) it (i.e., make it
writable)

$ chmod +w -R local-dataset

$ rm -rf local-dataset

64

