
RESEARCH DATA MANAGEMENT
��

WITH DATALAD
Adina Wagner

,
Institute of Neuroscience and Medicine (INM-7)
Research Center Jülich

Slides:
Sources:

 mas.to/@adswa

Psychoinformatics lab

�les.inm7.de/adina/talks/html/sfb-1280.html
https://github.com/datalad-handbook/datalad-course

1

https://mas.to/@adswa
http://psychoinformatics.de/
https://files.inm7.de/adina/talks/html/sfb-1280.html
https://github.com/datalad-handbook/datalad-course/blob/main/html/sfb-1280.html

WELCOME & LOGISTICS!

A approximate schedule for today:
1.00 pm: Introduction & Logistics
1.30 pm: Overview of DataLad + break ☕
2.00 pm: What's version control, and why should I care?
2:45 pm: Reproducibility features + break
3.30 pm: Data publication to the OSF + break ☕
4.30 pm: Outlook and/or Your Questions and Usecases

Collaborative notes & anonymous questions:
.etherpad.wikimedia.org/p/Datalad@sfb1280

Slides are CC-BY and will be shared after the workshop. Additional workshop
contents: psychoinformatics-de.github.io/rdm-course
Some guidelines for the virtual workshop venue...

Please mute yourself when you don't speak
Ask questions anytime, but make use of the "Raise hand" feature
Drop out and re-join as you please

2

https://etherpad.wikimedia.org/p/Datalad@sfb1280
https://psychoinformatics-de.github.io/rdm-course/

QUESTIONS/INTERACTION THROUGHOUT THE WORKSHOP
There are no stupid questions :)
Lively discussions are wonderful - unless its interrupting others, please feel
encouraged to unmute/turn on your video to interact.
There is room discuss speci�c or advanced use cases at the end. Please make a
note about them in the .Etherpad

3

https://etherpad.wikimedia.org/p/Datalad@sfb1280

QUESTIONS/INTERACTION AFTER THE WORKSHOP

If you have a question after the workshop, you can reach out for help:
Reach out to to the DataLad team via

 (free, decentralized communication app, no app needed). We run a weekly Zoom
of�ce hour (Tuesday, 4pm Berlin time) from this room as well.

Reach out to the user community with
A question on with a datalad tag

Find more user tutorials or workshop recordings
On
In the
In the
In the

Matrix

the development repository on GitHub

neurostars.org

DataLad's YouTube channel
DataLad Handbook
DataLad RDM course
Of�cial API documentation

4

https://matrix.to/#/!NaMjKIhMXhSicFdxAj:matrix.org?via=matrix.waite.eu&via=matrix.org&via=inm7.de
https://github.com/datalad/datalad
https://neurostars.org/
https://www.youtube.com/datalad
http://handbook.datalad.org/en/latest/
https://psychoinformatics-de.github.io/rdm-course/
http://docs.datalad.org/

RESOURCES AND FURTHER READING
Comprehensive user documentation in the
DataLad Handbook

High-level function/command overviews,
Installation, Con�guration, Cheatsheet

Narrative-based code-along course
Independent on background/skill level,
suitable for data management novices

Step-by-step solutions to common
data management problems, like
how to make a reproducible paper

Overview of most tutorials, talks, videos, ... at

(handbook.datalad.org)

github.com/datalad/tutorials

5

http://handbook.datalad.org/
https://github.com/datalad/tutorials

LIVE POLLING SYSTEM
Please use your phone to scan to QR code, or open the link in a new

browser window

http://etc.ch/yNtn

6

WHAT'S YOUR MOOD TODAY?

http://etc.ch

7

PRACTICAL ASPECTS

We'll work in the browser on a cloud server with JupyterHub
Cloud-computing environment:
 - datalad-hub.inm7.de
We have pre-installed DataLad and other requirements
We will work via the terminal
Your username is all lower-case and follows this pattern: Firstname +
Lastname initial (Adina Wagner -> adinaw)
Pick any password with at least 8 characters at �rst log-in (and
remember it)

Pl l i
8

https://datalad-hub.inm7.de/

PREREQUISITES: USING DATALAD
Every DataLad command consists of a main command followed by a sub-command. The main
and the sub-command can have options.

Example (main command, subcommand, several subcommand options):

Use --help to �nd out more about any (sub)command and its options, including detailed
description and examples (q to close). Use -h to get a short overview of all options

$ datalad save -m "Saving changes" --recursive

$ datalad save -h
 Usage: datalad save [-h] [-m MESSAGE] [-d DATASET] [-t ID] [-r] [-R LEVELS]
 [-u] [-F MESSAGE_FILE] [--to-git] [-J NJOBS] [--amend]
 [--version]
 [PATH ...]

Use '--help' to get more comprehensive information.

9

USING DATALAD IN THE TERMINAL
Check the installed version:

datalad --version copy

For help on using DataLad from the command line (press q to exit):

datalad --help copy

For extensive info about the installed package, its dependencies, and
extensions, use datalad wtf. Let's �nd out what kind of system we're
on:

datalad wtf -S system copy

10

GIT IDENTITY
Check git identity:

git config --get user.name
git config --get user.email

copy

Con�gure git identity:

git config --global user.name "Adina Wagner"
git config --global user.email "adina.wagner@t-online.de"

copy

Use the latest datalad features:

git config --global --add datalad.extensions.load next copy

11

USING DATALAD VIA ITS PYTHON API
Open a Python environment:
ipython copy

Import and start using:

import datalad.api as dl
dl.create(path='mydataset')

copy

Exit the Python environment:

exit copy

12

DIFFERENT WAYS TO USE DATALAD

DataLad can be used from the command line

datalad create mydataset

... or with its Python API

import datalad.api as dl
dl.create(path="mydataset")

... and other programming languages can use it via system call

in R
> system("datalad create mydataset")

... or via a graphical user interface "DataLad Gooey"

13

https://github.com/datalad/datalad-gooey

ACKNOWLEDGEMENTS

Software
Joey Hess (git-annex)
The DataLad team &
contributors

Illustrations
The Turing Way
project & Scriberia

Funders

Collaborators

14

CORE FEATURES:
Joint version control (,): version control data & software
alongside your code

Git git-annex

Provenance capture: Create and share machine-readable, re-
executable provenance records for reproducible, transparent, and FAIR
research
Decentral data transport mechanisms: Install, share and collaborate on
scienti�c projects; publish, update, and retrieve their contents in a
streamlined fashion on demand, and distribute �les in a decentral
network on the services or infrastructures of your choice

15

https://git-scm.com/
https://git-annex.branchable.com/

EXAMPLES OF WHAT DATALAD CAN BE USED FOR:

Publish or consume datasets via GitHub, GitLab, OSF, the European
Open Science Cloud, or similar services

16

EXAMPLES OF WHAT DATALAD CAN BE USED FOR:

Behind-the-scenes infrastructure component for data transport and
versioning (e.g., used by , , the

,)
OpenNeuro brainlife.io Canadian Open

Neuroscience Platform (CONP) CBRAIN

17

https://openneuro.org/
https://brainlife.io/
https://conp.ca/
https://mcin.ca/technology/cbrain/

EXAMPLES OF WHAT DATALAD CAN BE USED FOR:

Creating and sharing reproducible, open science: Sharing data,
software, code, and provenance

18

EXAMPLES OF WHAT DATALAD CAN BE USED FOR:
Creating and sharing reproducible, open science: Sharing data,
software, code, and provenance

19

EXAMPLES OF WHAT DATALAD CAN BE USED FOR:

Central data management and archival system

20

EXAMPLES OF WHAT DATALAD CAN BE USED FOR:
Scalable computing framework for reproducible science

PUBLISH

PUBLISH

Paper
B

Results

Analysis
A

Paper
A

Analysis
B

Tailored
results A

Pipeline

Tailored
results B

Public
cloud

storage

Authorized researchers

UK Biobank
servers

Data

42,000 BIDS-structured
participant datasets

Input data

Containerized
pipeline

Processing with the proposed workflow Further use of the results

Institutional
storage

Public access

 Anonymous
results

Metadata accessData accessAccess restriction

21

WHAT'S VERSION CONTROL, AND WHY SHOULD I CARE?

http://etc.ch/yNtn

22

EVERYTHING HAPPENS IN DATALAD DATASETS

.... or transform existing directories into datasets

.... or get datasets
from other places

create new, empty datasets to populate...

% datalad create

% datalad create -f

% datalad clone

L k d f l lik di t t

File viewer

23

...DATALAD DATASETS

Create a dataset (here, with the text2git con�guration, which adds a
helpful con�guration):

datalad create -c text2git my-analysis copy

Let's have a look inside. Navigate using cd (change directory):

cd my-analysis copy

List the directory content, including hidden �les, with ls:

ls -la . copy

24

DATASET = GIT/GIT-ANNEX REPOSITORY
version control �les regardless of size or type

save
changes

modify the
dataset

version 1

version 2

version 3

% datalad save

Stay �exible:

Non-complex DataLad core API (easy for data management novices)
Pure Git or git-annex commands (for regular Git or git-annex users, or
to use speci�c functionality)

25

...VERSION CONTROL
Let’s build a dataset for an analysis by adding a README. The command
below writes a simple header into a new �le README.md:

echo "# My example DataLad dataset" > README.md copy

Now we can check the status of the dataset:

datalad status copy

We can save the state with save

datalad save -m "Create a short README" copy

Further modi�cations:

echo "This dataset contains a toy data analysis" >> README.md copy

You can also checkout what has changed:

git diff copy

Save again:

datalad save -m "Add information on the dataset contents to the README" copy

26

...VERSION CONTROL
Now, let's check the dataset history:

git log copy

We can also make the history prettier:

tig

(navigate with arrow keys and enter, press "q" to go back and exit the program)

copy

27

EXHAUSTIVE TRACKING

The building blocks of a scienti�c result are rarely static

Analysis code evolves
(Fix bugs, add functions, refactor, ...)

Im
a

g
e

 c
re

d
it

: B
a

se
d

 o
n

 P
il

e
d

 H
ig

h
e

r
a

n
d

 D
e

e
p

e
r

1
5

3
1

28

https://phdcomics.com/comics/archive_print.php?comicid=1531

EXHAUSTIVE TRACKING

The building blocks of a scienti�c result are rarely static

Data changes
(errors are �xed, data is extended,
naming standards change, an analysis
requires only a subset of your data...)

Im
a

g
e

 c
re

d
it

: P
il

e
d

 H
ig

h
e

r
a

n
d

 D
e

e
p

e
r

1
3

2
3

29

https://phdcomics.com/comics/archive_print.php?comicid=1323

EXHAUSTIVE TRACKING
The building blocks of a scienti�c result are rarely static

Data changes (for
real)

(errors are �xed, data is
extended,
naming standards change, ...)

30

EXHAUSTIVE TRACKING
"Shit, which version of which script produced these outputs from which

version of what data... and which software version?"

Im
ag

e
cr

ed
it

: C
C

-B
Y

 S
cr

ib
er

ia
 a

n
d

 T
h

e
Tu

ri
n

g
W

ay

31

https://the-turing-way.netlify.app/reproducible-research/rdm.html

EXHAUSTIVE TRACKING
Once you track changes to data with version control tools, you can �nd

out why it changed, what has changed, when it changed, and which version

of your data was used at which point in time.

32

EXHAUSTIVE TRACKING

With the datalad-container extension, we can not only add code or
data, but also software containers to datasets and work with them. Let's
add a software container with Python software for later:

datalad containers-add nilearn \
 --url shub://adswa/nilearn-container:latest

copy

inspect the list of registered containers:

datalad containers-list copy

33

DIGITAL PROVENANCE
= "The tools and processes used to create a digital �le, the responsible
entity, and when and where the process events occurred"

Have you ever saved a PDF to read later onto your computer, but forgot
where you got it from? Or did you ever �nd a �gure in your project, but
forgot which analysis step produced it?

34

DIGITAL PROVENANCE
Imagine that you are getting a script from a colleague to perform your
analysis, but they email it to you or upload it to a random place for to
download:

wget -P code/ \
 https://raw.githubusercontent.com/datalad-handbook/resources/master/get_brainmask.py

copy

The wget command downloaded a script for extracting a brain mask:

datalad status copy

Save it into your dataset to have the script ready:

datalad save -m "Adding a nilearn-based script for brain masking" copy

Convenience functions make downloads easier. Let's add a nilearn tutorial,
and also register the original location of this �le as digital provenance:

datalad download-url -m "Add a tutorial on nilearn" \
 -O code/nilearn-tutorial.pdf \
 https://raw.githubusercontent.com/datalad-handbook/resources/master/nilearn-tutorial

copy

Notice how its automatically saved:

datalad status copy

Check out the �le's history:

git log code/nilearn-tutorial.pdf copy

35

PROVENANCE AND REPRODUCIBILITY
datalad run wraps around anything expressed in a command line call and

saves the dataset modi�cations resulting from the execution

save all
modifications
of the dataset

1
2

2

1

datalad run -m "did XY"

36

PROVENANCE AND REPRODUCIBILITY

datalad rerun repeats captured executions.
If the outcomes differ, it saves a new state of them.

1
2

2

1

datalad run -m "did XY"

save all
modifications
of the dataset

rerun a
previous

 command

37

... COMPUTATIONALLY REPRODUCIBLE EXECUTION I
A variety of processes can modify �les. A simple example: Code formatting

black code/get_brainmask.py copy

Version control makes changes transparent:

git diff copy

But its useful to keep track beyond that. Let's discard the latest changes...

git restore code/get_brainmask.py copy

... and record precisely what we did

datalad run -m "Reformat code with black" \
 "black code/get_brainmask.py"

copy

let's take a look (press q to exit):

git show copy

... and repeat!

datalad rerun copy

38

SEAMLESS DATASET NESTING & LINKAGE

Paper
B

Raw
data

Analysis
A

Paper
A

Analysis
B

Preprocessed

Nest modular datasets to create a linked hierarchy of datasets,
and enable recursive operations throughout the hierarchy

Im
ag

e
cr

ed
it

: P
o

lin
e

et
 a

l.,
 2

0
1

1

39

https://www.frontiersin.org/articles/10.3389/fninf.2012.00009/full

SEAMLESS DATASET NESTING & LINKAGE

1

1

$ datalad clone --dataset . http://example.com/ds inputs/rawdata

copy

$ git diff HEAD~1
diff --git a/.gitmodules b/.gitmodules
new file mode 100644
index 0000000..c3370ba
--- /dev/null
+++ b/.gitmodules
@@ -0,0 +1,3 @@
+[submodule "inputs/rawdata"]
+ path = inputs/rawdata
+ datalad-id = 68bdb3f3-eafa-4a48-bddd-31e94e8b8242
+ datalad-url = http://example.com/importantds

diff --git a/inputs/rawdata b/inputs/rawdata

copy

40

...DATASET NESTING
Let's make a nest!

Clone a dataset with analysis data into a speci�c location ("input/") in the
existing dataset, making it a subdataset:

datalad clone -d . \
 https://gin.g-node.org/adswa/bids-data \
 input

copy

Let's see what changed in the dataset, using the subdatasets command:

datalad subdatasets copy

... and also git show:

git show copy

41

We can now view the cloned dataset's �le tree:

cd input
ls

copy

...and also its history

tig copy

Let's check the dataset size (with the du disk-usage command):

du -sh copy

Let's check the actual dataset size:

datalad status --annex copy

You can get or drop annexed �le contents depending on your needs:

datalad get sub-02 copy

datalad drop sub-02 copy

42

...COMPUTATIONALLY REPRODUCIBLE EXECUTION...
Try to execute the downloaded analysis script. Does it work?

cd ..
datalad run -m "Compute brain mask" \
 --input input/sub-02/func/sub-02_task-oneback_run-01_bold.nii.gz \

 --output "figures/*" \
 --output "sub-02*" \
 "python code/get_brainmask.py"

copy

Software can be dif�cult or impossible to install (e.g. con�icts with
existing software, or on HPC) for you or your collaborators
Different software versions/operating systems can produce different
results: Glatard et al., doi.org/10.3389/fninf.2015.00012
Software containers encapsulate a software environment and isolate it
from a surrounding operating system. Two common solutions: Docker,
Singularity

43

https://doi.org/10.3389/fninf.2015.00012

SOFTWARE CONTAINERS

http://etc.ch/yNtn

44

COMPUTATIONAL PROVENANCE

The datalad-container extension gives DataLad commands to register software containers

as "just another �le" to your dataset, and datalad containers-run analysis inside the container,
capturing software as additional provenance

save all
modifications
of the dataset

unlock
output files

for modification
--output

get input data
--input

1
2

2

1

link input, code, output, and software with
datalad containers-run

datalad containers-run

get and use registered software
container for computation

--container-name

</>

45

...COMPUTATIONALLY REPRODUCIBLE EXECUTION
Let's try out the containers-run command:

datalad containers-run -m "Compute brain mask" \
 -n nilearn \
 --input input/sub-02/func/sub-02_task-oneback_run-01_bold.nii.gz \

 --output "figures/*" \
 --output "sub-02*" \
 "python code/get_brainmask.py"

copy

You can now query an individual �le how it came to be…

git log sub-02_brain-mask.nii.gz copy

… and the computation can be redone automatically and checked for
computational reproducibility based on the recorded provenance using
datalad rerun:

datalad rerun copy

46

SHARING DATASETS

Apart from local computing infrastructure (from private laptops to computational clusters) datasets can be hosted in

47

SHARING DATASETS

There are lots of available services, but we will focus on the Open Science
Framework.

http://etc.ch/yNtn

48

TRANSPORT LOGISTICS: LOTS OF DATA, LITTLE DISK-USAGE

Cloned datasets are lean. "Meta data" (�le names, availability) are
present, but no �le content:

$ datalad clone git@github.com:psychoinformatics-de/studyforrest-data-phase2.git
 install(ok): /tmp/studyforrest-data-phase2 (dataset)
$ cd studyforrest-data-phase2 && du -sh
 18M .

�les' contents can be retrieved on demand:

$ datalad get sub-01/ses-movie/func/sub-01_ses-movie_task-movie_run-1_bold.nii.gz
 get(ok): /tmp/studyforrest-data-phase2/sub-01/ses-movie/func/sub-01_ses-movie_task-mo

copy

Have access to more data on your computer than you have disk-space:

eNKI dataset (1.5TB, 34k files):
$ du -sh
1.5G .
HCP dataset (~200TB, >15 million files)
$ du -sh
48G .

copy

49

PLENTY OF DATA, BUT LITTLE DISK-USAGE
Drop �le content that is not needed:

$ datalad drop sub-01/ses-movie/func/sub-01_ses-movie_task-movie_run-1_bold.nii.gz
drop(ok): /tmp/studyforrest-data-phase2/sub-01/ses-movie/func/sub-01_ses-movie_task-mov

copy

When �les are dropped, only "meta data" stays behind, and they can be re-
obtained on demand.

dl.get('input/sub-01')

[really complex analysis]

dl.drop('input/sub-01')

copy

50

THERE ARE TWO VERSION CONTROL TOOLS AT WORK - WHY?

Git does not handle large �les well.

51

THERE ARE TWO VERSION CONTROL TOOLS AT WORK - WHY?

Git does not handle large �les well.

A d i h i i f h dl l �l
52

GIT VERSUS GIT-ANNEX

Git
- dataset history (commit messages,
 run records)
- All files + content committed into Git
 (useful with code, text, ...)
- File identity information of all annexed
 files (file name, identity hash, storage
 locations where to retrieve it from)

git-annex
- contents of annexed files
- organized in the "annex" or "object tree"
 of the dataset

53

DATASET INTERNALS
Where the �lesystem allows it, annexed �les are symlinks:

(PS: especially useful in datasets with many identical �les)

The symlink reveals this internal data organization based on identity hash:

Delineation and advantages of decentral versus central RDM:

$ ls -l sub-02/func/sub-02_task-oneback_run-01_bold.nii.gz
lrwxrwxrwx 1 adina adina 142 Jul 22 19:45 sub-02/func/sub-02_task-oneback_run-01_bold.nii.gz ->
../../.git/annex/objects/kZ/K5/MD5E-s24180157--aeb0e5f2e2d5fe4ade97117a8cc5232f.nii.gz/MD5E-s2418
--aeb0e5f2e2d5fe4ade97117a8cc5232f.nii.gz

$ md5sum sub-02/func/sub-02_task-oneback_run-01_bold.nii.gz
aeb0e5f2e2d5fe4ade97117a8cc5232f sub-02/func/sub-02_task-oneback_run-01_bold.nii.gz

The (tiny) symlink instead of the (potentially large) �le content is committed -
version controlling precise �le identity without checking contents into Git

File contents can be shared via almost all standard infrastructure. File availability
information is a decentral network. A �le can exist in multiple different locations.

$ git annex whereis code/nilearn-tutorial.pdf
whereis code/nilearn-tutorial.pdf (2 copies)
 cf13d535-b47c-5df6-8590-0793cb08a90a -- [datalad]
 e763ba60-7614-4b3f-891d-82f2488ea95a -- jovyan@jupyter-adswa:~/my-analysis [here]

 datalad: https://raw.githubusercontent.com/datalad-handbook/resources/master/nilearn-tutorial.p

Hanke et al (2021) In defense of decentralized research

54

https://doi.org/10.1515/nf-2020-0037

GIT VERSUS GIT-ANNEX

Data in datasets is either stored in Git or git-annex
By default, everything is annexed.

Useful background information for demo later. Read for details

Two consequences:
Annexed contents are not available right

after cloning, only content identity and
availability information (as they are stored in
Git). Everything that is annexed needs to be
retrieved with datalad get from
whereever it is stored.

Files stored in Git are modi�able, annexed
�les are protected against accidental
modifcations

Git git-annex

handles small �les well (text, code) handles all types and sizes of �les well

�le contents are in the Git history and will be shared upon
git/datalad push

�le contents are in the annex. Not necessarily
shared

Shared with every dataset clone Can be kept private on a per-�le level when
sharing the dataset

Useful: Small, non-binary, frequently modi�ed, need-to-be-
accessible (DUA, README) �les

Useful: Large �les, private �les

this handbook chapter
55

http://handbook.datalad.org/en/latest/basics/101-115-symlinks.html

GIT VERSUS GIT-ANNEX
Users can decide which �les are annexed:

Pre-made run-procedures, provided by DataLad (e.g., text2git,
yoda) or created and shared by users ()
Self-made con�gurations in .gitattributes (e.g., based on �le type,
�le/path name, size, ...;)
Per-command basis (e.g., via datalad save --to-git)

Tutorial

rules and examples

56

http://handbook.datalad.org/en/latest/basics/101-124-procedures.html
http://handbook.datalad.org/en/latest/basics/101-123-config2.html#gitattributes

PUBLISHING DATASETS
I have a dataset on my computer. How can I share it, or collaborate on it?

Your dataset

work stations
& servers

Repository hosting
services

Third party
storage providers

57

GLOSSARY

Sibling (remote)
Linked clones of a dataset. You can usually update (from) siblings to keep all your siblings in
sync (e.g., ongoing data acquisition stored on experiment compute and backed up on cluster
and external hard-drive)

Repository hosting service
Webservices to host Git repositories, such as GitHub, GitLab, Bitbucket, Gin, ...

Third-party storage
Infrastructure (private/commercial/free/...) that can host data. A "special remote" protocol is
used to publish or pull data to and from it

Publishing datasets
Pushing dataset contents (Git and/or annex) to a sibling using datalad push

Updating datasets
Pulling new changes from a sibling using datalad update --merge

58

PUBLISHING DATASETS
Most public datasets separate content in Git versus git-annex behind
the scenes

Git
- dataset history (commit messages,
 run records)
- All files + content committed into Git
 (useful with code, text, ...)
- File identity information of all annexed
 files (file name, identity hash, storage
 locations where to retrieve it from)

git-annex
- contents of annexed files
- organized in the "annex" or "object tree"
 of the dataset

59

PUBLISHING DATASETS

Git
- dataset history (commit messages,
 run records)
- All files + content committed into Git
 (useful with code, text, ...)
- File identity information of all annexed
 files (file name, identity hash, storage
 locations where to retrieve it from)

git-annex
- contents of annexed files
- organized in the "annex" or "object tree"
 of the dataset

Repository hosting
- usually no annex support &
 can't hold large data for free
- exposes Git history and files
 stored in Git
- datasets can be cloned from there

60

PUBLISHING DATASETS

Git
- dataset history (commit messages,
 run records)
- All files + content committed into Git
 (useful with code, text, ...)
- File identity information of all annexed
 files (file name, identity hash, storage
 locations where to retrieve it from)

git-annex
- contents of annexed files
- organized in the "annex" or "object tree"
 of the dataset

Repository hosting
- usually no annex support &
 can't hold large data for free
- exposes Git history and files
 stored in Git
- datasets can be cloned from there

Storage hosting in a
special remote
- usually no Git repository hosting
 service
- stores the object tree/
 file contents
- datasets keep track of where
 data is stored, datalad get
 retrieves file contents from
 special remote

61

PUBLISHING DATASETS

Typical case:
Datasets are exposed via a private or public repository on a repository hosting service
Data can't be stored in the repository hosting service, but can be kept in almost any third party
storage
Publication dependencies automate pushing to the correct place, e.g.,

$ git config --local remote.github.datalad-publish-depends gdrive
or
$ datalad siblings add --name origin --url git@git.jugit.fzj.de:adswa/experiment-data.git --publish-depends s3

62

PUBLISHING DATASETS
Special case 1: repositories with annex support

Git
- dataset history (commit messages,
 run records)
- All files + content committed into Git
 (useful with code, text, ...)
- File identity information of all annexed
 files (file name, identity hash, storage
 locations where to retrieve it from)

git-annex
- contents of annexed files
- organized in the "annex" or "object tree"
 of the dataset

Repositories with annex
support
- examples: GIN (gin.g-node.org), GitLab
instances with enabled annex support
- can hold large data for free
- exposes Git history and all files + content
- datasets can be cloned from there

63

PUBLISHING DATASETS
Special case 2: Special remotes with repositories

Git- dataset history (commit messages,
run records)- All files + content committed
into Git (useful with code, text, ...)- File
identity information of all annexed files
(file name, identity hash, storage
locations where to retrieve it from)

git-annex- contents of annexed files-
organized in the "annex" or "object tree"
of the dataset

Publishing both components
to a special remote
- performed with DataLad extensions (e.g.,
datalad-osf, datalad-next), or helpers (e.g., git-
remote-rclone)
- publishes the Git repository in conjunction with
annexed data
- allows cloning from a special remote

64

Publishing to OSF
https://osf.io/

65

https://osf.io/

CREATE-SIBLING-OSF

Requires the DataLad extensions datalad-osf and datalad-next

Prerequisites:

(docs)

1. Log into OSF
2. Create personal access token
3. Enter credentials using datalad osf-credentials:

datalad osf-credentials copy

66

https://docs.datalad.org/projects/osf/en/latest/

CREATE-SIBLING-OSF

Create the sibling in your dataset (different modes are possible):

(docs)

datalad create-sibling-osf -d . -s my-osf-sibling \
--title 'my-osf-project-title' --mode export --public

copy

Push to the sibling:

datalad push -d . --to my-osf-sibling copy

Clone from the sibling:

cd ..
datalad clone osf://my-osf-project-id my-osf-clone

copy

67

https://docs.datalad.org/projects/osf/en/latest/

SUMMARY AND TAKE-HOME MESSAGES

68

EXHAUSTIVE TRACKING OF RESEARCH COMPONENTS

Well-structured datasets (using community standards), and portable
computational environments — and their evolution — are the precondition

for reproducibility

turn any directory into a dataset
with version control

% datalad create <directory>

save a new state of a dataset with
file content of any size

% datalad save

69

CAPTURE COMPUTATIONAL PROVENANCE

Which data was needed at which version, as input into which code,
running with what parameterization in which computional environment,

to generate an outcome?

execute any command and capture its output
while recording all input versions too

% datalad run input output <command>

70

EXHAUSTIVE CAPTURE ENABLES PORTABILITY

Precise identi�cation of data and computational environments combined
with provenance records form a comprehensive and portable data

structure, capturing all aspects of an investigation.

transfer data and metadata to other sites and services
with fine-grained access control for dataset components

% datalad push to <site or service>

71

REPRODUCIBILITY STRENGTHENS TRUST

Outcomes of computational transformations can be validated by
authorized 3rd-parties. This enables audits, promotes accountability, and

streamlines automated "upgrades" of outputs

obtain dataset (initially only identity,
availability, and provenance metadata)

% datalad clone <url>

immediately actionable provenance records
full abstraction of input data retrieval

% datalad rerun <commit|tag|range>

72

ULTIMATE GOAL: (RE-)USABILITY

Veri�able, portable, self-contained data structures that track all aspects of
an investigation exhaustively can be (re-)used as modular components in

larger contexts — propagating their traits

declare a dependency on another dataset and
re-use it a particular state in a new context

% datalad clone d <superdataset> <url> <path in dataset>

73

YOUR QUESTIONS AND USECASES

74

POST-WORKSHOP CONTACT

Slides are CC-BY. They will stay online and will be made available as a
PDF as well
Contact the DataLad Team anytime via GitHub issue, Matrix chat
message, or in our of�ce hour video call
Find more DataLad content and tutorials at handbook.datalad.org

Join us at our �rst conference for distributed data management:
 (April 2024, registration closes October 15th)distribits.live

THANKS FOR YOU ATTENTION!

75

https://handbook.datalad.org/
https://distribits.live/

LIST OF INSTALLED SOFTWARE ON JUPYTER

The JupyterHub runs on Ubuntu 22.04 via an AWS EC2 instance. The
following packages were installed with different package managers:

apt: Git, git-annex, tree, tig, zsh, singularity
pip: datalad, datalad-next, datalad-container, datalad-osf, black

Instructions to set up and con�gure your own JupyterHub are publicly
available at psychoinformatics-de.github.io/rdm-course/for_instructors

76

https://psychoinformatics-de.github.io/rdm-course/for_instructors/index.html

OUTLOOK

77

FAIRLY BIG: SCALING UP

Objective: Process the UK Biobank (imaging data)

76 TB i 43 illi �l i l
78

CHALLENGES

Process data such that

Results are computationally reproducible (without the original
compute infrastructure)
There is complete linkage from results to an individual data record
download
It scales with the amount of available compute resources

Data processing pipeline

Compiled MATLAB blob
1h processing time per image, with 41k images to process
1.2 M output �les (30 output �les per input �le)
1.2 TB total size of outputs

79

FAIRLY BIG SETUP

Exhaustive tracking
 extension downloads, transforms & track the evolution of the complete data

release in DataLad datasets
Native and BIDSi�ed data layout (at no additional disk space usage)
Structured in 42k individual datasets, combined to one superdataset
Containerized pipeline in a software container
Link input data & computational pipeline as dependencies

datalad-ukbiobank

80

https://github.com/datalad/datalad-ukbiobank

FAIRLY BIG WORKFLOW

portability
Parallel processing: 1 job = 1 subject (number of concurrent jobs capped at the capacity of the
compute cluster)
Each job is computed in a ephemeral (short-lived) dataset clone, results are pushed back:
Ensure exhaustive tracking & portability during computation
Content-agnostic persistent (encrypted) storage (minimizing storage and inodes)
Common data representation in secure environments

1
2

3

Wagner, Waite, Wierzba et al. (2021). FAIRly big: A framework for computationally reproducible processing of large-scale
data.

81

https://www.nature.com/articles/s41597-022-01163-2

FAIRLY BIG PROVENANCE CAPTURE

P

82

FAIRLY BIG MOVIE

Two computations on clusters of different scale (small cluster,
supercomputer). Full video:
Two full (re-)computations, programmatically comparable, veri�able,

Reproducible processing of 41,180 brain images from the UK Biobank with DataLadReproducible processing of 41,180 brain images from the UK Biobank with DataLad
Copy linkCopy link

https://youtube.com/datalad
83

https://www.youtube.com/watch?v=UsW6xN2f2jc
https://youtube.com/datalad

