
YOUR TURN!
Use what you already know about how and where to get help to complete these
challenges
on or on your own system:

1. Create dataset, add a file with the content "abc". Check the status
of the
dataset. Now save the dataset with a commit message. Check the
status again.

2. Create a different dataset outside the first one.

3. Clone the first dataset into the second under the name "input".

4. Use datalad to capture the provenance of a data transformation that converts
the content of the file created at (1) to all-uppercase and saves it in the dataset
from (2). Hint the command

can convert text in this fashion.

5. Check the status of the dataset. Now let DataLad show you the change
to the
dataset that running the tr command made.

https://datalad-hub.inm7.de

sh -c 'tr "a-z" "A-Z" < inputpath > outputpath'

2

https://datalad-hub.inm7.de/

A GUIDED CODE-ALONG THROUGH DATALAD'S BASICS AND
INTERNALS

Code:
psychoinformatics-de.github.io/rdm-course/01-content-tracking-with-datalad/index.html#getting-started-create-an-empty-
dataset

3

https://psychoinformatics-de.github.io/rdm-course/01-content-tracking-with-datalad/index.html#getting-started-create-an-empty-dataset

DATALAD DATASETS
DataLad's core data structure

Dataset = A directory managed by DataLad
Any directory of your computer can be managed by DataLad.
Datasets can be created (from scratch) or installed
Datasets can be nested: linked subdirectories

$ datalad create -c text2git my-dataset

4

DATALAD DATASETS

A DataLad dataset is a joined Git + git-annex repository

5

WHAT IS VERSION CONTROL?

Im
ag

e
cr

ed
it

: I
llu

st
ra

ti
o

n
 a

d
ap

te
d

 fr
o

m
 S

cr
ib

er
ia

 a
n

d
 T

h
e

Tu
ri

n
g

W
ay

keep things organized
keep track of changes
revert changes or go back to previous states

6

WHY VERSION CONTROL?

7

VERSION CONTROL
DataLad knows two things: Datasets and files

.... or transform existing directories into datasets

create new, empty datasets to populate...

% datalad create

% datalad create -f

save

changes

modify the

dataset

version 1

version 2

version 3

% datalad save

Every file you put into a in a dataset can be easily version-controlled,
regardless of size, with the same command: datalad save

Pure Git/git-annex commands can be used as well

8

LOCAL VERSION CONTROL
Procedurally, version control is easy with DataLad!

save
changes in
meaningful

 units

modify the
dataset

datalad save -m "did X" file1

Advice:
Save meaningful units of change
Attach helpful commit messages

9

THIS MEANS: YOU CAN ALSO VERSION CONTROL DATA!
$ datalad save \

 -m "Adding raw data from neuroimaging study 1" \

 sub-*

 add(ok): sub-1/anat/T1w.json (file)

 add(ok): sub-1/anat/T1w.nii.gz (file)

 add(ok): sub-1/anat/T2w.json (file)

 add(ok): sub-1/anat/T2w.nii.gz (file)

 add(ok): sub-1/func/sub-1-run-1_bold.json (file)

 add(ok): sub-1/func/sub-1-run-1_bold.nii.gz (file)

 add(ok): sub-10/anat/T1w.json (file)

 add(ok): sub-10/anat/T1w.nii.gz (file)

 add(ok): sub-10/anat/T2w.json (file)

 add(ok): sub-10/anat/T2w.nii.gz (file)

 [110 similar messages have been suppressed]

 save(ok): . (dataset)

 action summary:

 add (ok: 120)

 save (ok: 1)

10

VERSION CONTROL
Your dataset can be a complete research log, capturing everything that was
done, when, by whom, and how

Interact with the history:

reset your dataset (or subset of it) to a previous state,

throw out changes or bring them back,

find out what was done when, how, why, and by whom

Identify precise versions: Use data in the most recent version, or the one from
2018, or...

...

11

PREVIEW: START TO RECORD PROVENANCE
Have you ever saved a PDF to read later onto your computer, but forgot
where
you got it from?
Digital Provenance = "The tools and processes used to create a
digital file, the
responsible entity, and when and where the process
events occurred"
The history of a dataset already contains provenance, but there is more
to
record - for example: Where does a file come from?
datalad download-url
is helpful

12

SUMMARY - LOCAL VERSION CONTROL
datalad create creates an empty dataset.

Configurations (-c yoda, -c text2git) are useful (details soon).

A dataset has a history to track files and their modifications.
Explore it with Git (git log) or external tools (e.g., tig).

datalad save records the dataset or file state to the history.
Concise commit messages should summarize the change for future you and
others.

datalad download-url obtains web content and records its origin.
It even takes care of saving the change.

datalad status reports the current state of the dataset.
A clean dataset status (no modifications, not untracked files) is good practice.

13

QUESTIONS!
Awkward silence can be bridged with awkward MC questions :)

http://etc.ch/7YEk

14

TEASER: TIME-TRAVELLING
Code:

Comprehensive walk-through

Mistakes are not forever anymore: Past changes can transparently be undone
Become a time-bender: Travel back in time or rewrite history

psychoinformatics-de.github.io/rdm-course/01-content-tracking-with-datalad/index.html#breaking-things-and-repairing-them

handbook.datalad.org/basics/101-137-history.html

Git's various identifiers:
Commit hash/Commit SHA: A 40-character string identifying each commit
Branch names, e.g., main
Tags, e.g., v.0.1
A pointer to the checked-out (current) commit on the current branch, HEAD

15

https://psychoinformatics-de.github.io/rdm-course/01-content-tracking-with-datalad/index.html#getting-started-create-an-empty-dataset
http://handbook.datalad.org/en/lastest/basics/101-137-history.html

SUMMARY: INTERACTING WITH GIT'S HISTORY (TEASER)
Interactions with Git's history require Git commands, but are immensely
powerful

More in handbook.datalad.org/basics/101-137-history.html

git restore is a dangerous (!), but sometimes useful command:
It removes unsaved modifications to restore files to a past, saved state. What
has been removed by it can not be brought back to life!

git revert [hash] transparently undoes a past commit
It will create a new entry in the revision history about this.

git checkout
lets you - among other things - time-travel.

Commands that are out of scope but useful to know:
git rebase changes and git reset rewinds history without creating a
commit about it (see Handbook chapter for examples).

A life-saver that is not well-known: git reflog
A time-limited backlog of every past performed action, can undo every
mistake except git restore and git clean.

16

http://handbook.datalad.org/en/latest/basics/101-137-history.html

QUESTIONS!

http://etc.ch/7YEk

17

A LOOK UNDERNEATH THE HOOD
(IN-DEPTH EXPLANATIONS HOW AND WHY THINGS WORK, WITH PLENTY OF TEASERS TO ADDITIONAL FEATURES)

18

THERE ARE TWO VERSION CONTROL TOOLS AT WORK - WHY?
Git does not handle large files well.

19

THERE ARE TWO VERSION CONTROL TOOLS AT WORK - WHY?

Git does not handle large files well.

And repository hosting services refuse to handle large files:

git-annex to the rescue! Let's take a look how it works

20

CONSUMING DATASETS
A dataset can be created from scratch/existing directories:

but datasets can also be installed from paths or from URLs:

Hint: Did you know that you can get the as a Dataset?

$ datalad create mydataset

[INFO] Creating a new annex repo at /home/adina/mydataset

create(ok): /home/adina/mydataset (dataset)

$ datalad clone https://github.com/datalad-datasets/human-connectome-project-openac

install(ok): /tmp/HCP (dataset)

Human Connectome Project Open Access Data

21

https://github.com/datalad-datasets/human-connectome-project-openaccess

CONSUMING DATASETS
Here's how to get a dataset:

22

CONSUMING DATASETS
Here's how a dataset looks after installation:

Try it yourself with github.com/datalad-datasets/machinelearning-books.git

23

https://github.com/datalad-datasets/machinelearning-books.git

PLENTY OF DATA, BUT LITTLE DISK-USAGE
Cloned datasets are lean.
"Meta data" (file names, availability) are present, but
no file content:

$ datalad clone git@github.com:psychoinformatics-de/studyforrest-data-phase2.git

 install(ok): /tmp/studyforrest-data-phase2 (dataset)

 $ cd studyforrest-data-phase2 && du -sh

 18M	.

files' contents can be retrieved on demand:

$ datalad get sub-01/ses-movie/func/sub-01_ses-movie_task-movie_run-1_bold.nii.gz

 get(ok): /tmp/studyforrest-data-phase2/sub-01/ses-movie/func/sub-01_ses-movie_task-movie_run-1

Have more access to your computer than you have disk-space:

eNKI dataset (1.5TB, 34k files):

$ du -sh

1.5G	 .

HCP dataset (~200TB, >15 million files)

$ du -sh

48G	.

24

PLENTY OF DATA, BUT LITTLE DISK-USAGE
Drop file content that is not needed:

$ datalad drop sub-01/ses-movie/func/sub-01_ses-movie_task-movie_run-1_bold.nii.gz

drop(ok): /tmp/studyforrest-data-phase2/sub-01/ses-movie/func/sub-01_ses-movie_task-movie_run-1_

When files are dropped, only "meta data" stays behind, and they can be re-
obtained on demand.

dl.get('input/sub-01')

[really complex analysis]

dl.drop('input/sub-01')

25

GIT VERSUS GIT-ANNEX
Data in datasets is either stored in Git or git-annex

By default, everything is annexed, i.e., stored in a dataset annex by git-annex
& only content-identity is committed to Git.

Git git-annex

handles small files well (text, code) handles all types and sizes of files well

file contents are in the Git history
and will be shared upon git/datalad push file contents are in the annex. Not necessarily shared

Shared with every dataset clone Can be kept private on a per-file level when sharing
the dataset

Useful: Small, non-binary, frequently modified, need-to-be-accessible (DUA,
README) files

Useful: Large files, private files

Useful background information for demo later. Read
 for details

Files stored in Git are modifiable, files stored in
Git-annex are content-locked

Annexed contents are not available right after
cloning,
only content identity and availability
information (as they are stored in Git).
Everything
that is annexed needs to be retrieved with
datalad get from whereever it is stored.

this handbook chapter

26

http://handbook.datalad.org/en/latest/basics/101-115-symlinks.html

GIT VERSUS GIT-ANNEX

Git
- dataset history (commit messages,
 run records)
- All files + content committed into Git
 (useful with code, text, ...)
- File identity information of all annexed
 files (file name, identity hash, storage
 locations where to retrieve it from)

git-annex
- contents of annexed files
- organized in the "annex" or "object tree"
 of the dataset

27

GIT VERSUS GIT-ANNEX
When sharing datasets with someone without access to the same
computational
infrastructure, annexed data is not necessarily stored together
with the rest
of the dataset (more tomorrow in the session on publishing).

Transport logistics exist to interface with all major storage providers.
If the one
you use isn't supported, let us know!

28

GIT VERSUS GIT-ANNEX
Users can decide which files are annexed:

Pre-made run-procedures, provided by DataLad (e.g., text2git, yoda)
or
created and shared by users
()
Self-made configurations in .gitattributes (e.g., based on file type,
file/path
name, size, ...;)
Per-command basis (e.g., via datalad save --to-git)

Tutorial

rules and examples

29

http://handbook.datalad.org/en/latest/basics/101-124-procedures.html
http://handbook.datalad.org/en/latest/basics/101-123-config2.html#gitattributes

TEXT VERSUS BINARY FILES
The text2git procedure affects text files. Can you identify
them?

http://etc.ch/7YEk

An overview of text- versus binary files and implications for version control is in
psychoinformatics-de.github.io/rdm-course/02-
structuring-data/index.html#file-types-text-vs-binary

30

https://psychoinformatics-de.github.io/rdm-course/02-structuring-data/index.html#file-types-text-vs-binary

DISTRIBUTED AVAILABILITY

Delineation and advantages of decentral versus central RDM:

git-annex conceptualizes file availability information as a decentral network.
A file can exist in
multiple different locations. git annex whereis
tells you which are known:

$ git annex whereis inputs/images/chinstrap_02.jpg

whereis inputs/images/chinstrap_02.jpg (1 copy)

	 00000000-0000-0000-0000-000000000001 -- web

	 c1bfc615-8c2b-4921-ab33-2918c0cbfc18 -- adina@muninn:/tmp/my-dataset [here]

 web: https://unsplash.com/photos/8PxCm4HsPX8/download?force=true

ok

If a file has no other known storage locations, drop will warn
Here is a file with a registered remote location (the web)

$ datalad drop inputs/images/chinstrap_02.jpg

drop(ok): /home/my-dataset/inputs/images/chinstrap_02.jpg (file)

$ datalad get inputs/images/chinstrap_02.jpg

get(ok): inputs/images/chinstrap_02.jpg (file)

Here is a file without a registered remote location (the web)

$ datalad drop inputs/images/chinstrap_01.jpg

drop(error): inputs/images/chinstrap_01.jpg (file)

 [unsafe; Could only verify the existence of 0 out of 1 necessary copy;

 (Use --reckless availability to override this check, or adjust numcopies.)]

In defense of decentralized research data management

31

https://doi.org/10.1515/nf-2020-0037

DATA PROTECTION
Why are annexed contents write-protected? (part I)

Where the filesystem allows it, annexed files are symlinks:

(PS: especially useful in datasets with many identical files)

The symlink reveals git-annex internal data organization based on identity hash:

$ ls -l inputs/images/chinstrap_01.jpg

lrwxrwxrwx 1 adina adina 132 Apr 5 20:53 inputs/images/chinstrap_01.jpg -> ../../.git/annex/objects/1z/

xP/MD5E-s725496--2e043a5654cec96aadad554fda2a8b26.jpg/MD5E-s725496--2e043a5654cec96aadad554fda2a8b26.jpg

$ md5sum inputs/images/chinstrap_01.jpg

2e043a5654cec96aadad554fda2a8b26 inputs/images/chinstrap_01.jpg

git-annex write-protects files to keep this symlink functional -
Changing file contents without
git-annex knowing would make the hash change and the symlink point to nothing
To (temporarily) remove the write-protection one can unlock the file

32

DETOUR & TEASER: REPRODUCIBLE DATA ANALYSIS
Your past self is the worst collaborator:

Code:

Im
ag

e
cr

ed
it

: F
u

ll
co

m
ic

 a
t

h
tt

p
:/

/p
h

d
co

m
ic

s.
co

m
/c

o
m

ic
s.

p
h

p
?f

=
1

9
7

9

psychoinformatics-de.github.io/rdm-course/01-content-tracking-with-datalad/index.html#data-processing

33

http://phdcomics.com/comics.php?f=1689
https://psychoinformatics-de.github.io/rdm-course/01-content-tracking-with-datalad/index.html#data-processing

REPRODUCIBLE EXECUTION & PROVENANCE CAPTURE
datalad run wraps a command execution and records its impact on a dataset.

save all
modifications
of the dataset

- human-readable
 commit message

 - machine-readable
run-record

1

2

2

1

Reproducible execution:

link input, code, and output with
 datalad run

datalad run -m "did XY"

34

REPRODUCIBLE EXECUTION & PROVENANCE CAPTURE
datalad run wraps a command execution and records its impact on a dataset.

The resulting commit's hash (or any other identifier) can be used
to automatically re-execute a
computation (more on this tomorrow)

commit 9fbc0c18133aa07b215d81b808b0a83bf01b1984 (HEAD -> main)

Author: Adina Wagner [adina.wagner@t-online.de]

Date: Mon Apr 18 12:31:47 2022 +0200

 [DATALAD RUNCMD] Convert the second image to greyscale

 === Do not change lines below ===

 {

 "chain": [],

 "cmd": "python code/greyscale.py inputs/images/chinstrap_02.jpg outputs/im>

 "dsid": "418420aa-7ab7-4832-a8f0-21107ff8cc74",

 "exit": 0,

 "extra_inputs": [],

 "inputs": [],

 "outputs": [],

 "pwd": "."

 }

 ^^^ Do not change lines above ^^^

diff --git a/outputs/images_greyscale/chinstrap_02_grey.jpg b/outputs/images_gr>

new file mode 120000

index 0000000..5febc72

--- /dev/null

+++ b/outputs/images_greyscale/chinstrap_02_grey.jpg

@@ -0,0 +1 @@

+../../.git/annex/objects/19/mp/MD5E-s758168--8e840502b762b2e7a286fb5770f1ea69.>

\ No newline at end of file

35

DATA PROTECTION
Why are annexed contents write-protected? (part 2)

When you try to modify an annexed file without unlocking you will see
"Permission denied"
errors.

Traceback (most recent call last):

 File "/home/bob/Documents/rdm-warmup/example-dataset/code/greyscale.py", line 20, in module

 grey.save(args.output_file)

 File "/home/bob/Documents/rdm-temporary/venv/lib/python3.9/site-packages/PIL/Image.py", line 2232, in save

 fp = builtins.open(filename, "w+b")

PermissionError: [Errno 13] Permission denied: 'outputs/images_greyscale/chinstrap_02_grey.jpg'

Use datalad unlock to make the file modifiable.
Underneath the hood (given the file system
initially supported symlinks), this removes the symlink:

$ datalad unlock outputs/images_greyscale/chinstrap_02_grey.jpg

$ ls outputs/images_greyscale/chinstrap_02_grey.jpg

-rw-r--r-- 1 adina adina 758168 Apr 18 12:31 outputs/images_greyscale/chinstrap_02_grey.jpg

datalad save locks the file again.
Locking and unlocking ensures that git-annex always finds the
right version of a file.

36

REPRODUCIBLE EXECUTION & PROVENANCE CAPTURE
datalad run wraps a command execution and records its impact on a dataset.

In addition, it can take care of data retrieval and unlocking

save all
modifications
of the dataset

- human-readable
 commit message

 - machine-readable
run-record

unlock
output files

for modification
--outputget input data

--input

1

2

2

1

Reproducible execution:

link input, code, and output with
datalad run

datalad run -m "did XY"

37

DATALAD RERUN
datalad rerun is helpful to spare others and yourself
the short- or long-term memory task,
or the forensic skills to figure
out how you performed an analysis
But it is also a digital and machine-reable provenance record
Important: The better the run command is specified, the better the
provenance record
Note: run and rerun only create an entry in the history if the command execution
leads to a
change.

Task: Use datalad rerun to rerun the script execution.
Find out if the output changed

38

SUMMARY - UNDERNEATH THE HOOD
Files are either kept in Git or in git-annex.

datalad save is used for both, but configurations (e.g., text2git), dataset rules
(e.g., in a
.gitattributes file, or flags change the default behavior
of annexing everything

Annexed files behave differently from files kept in Git:
They can be retrieved and dropped from local or remote locations, they are write-protected,
their content is unkown to Git (and thus easy to keep private).

datalad clone installs datasets from URLs or local or remote paths
Annexed files contents can be retrieved or dropped on demand, file contents of
files stored in
Git are available right away.

datalad unlock makes annexed files modifiable, datalad save
locks them again.
(It is generally easier to get accidentally saved files out of the annex than out of Git -
see

 for examples)handbook.datalad.org/basics/101-136-filesystem.html

datalad run records the impact of any command execution in
a dataset.
Data/directories specified as --input
are retrieved prior to command execution,
data/directories specified as --output unlocked.

datalad rerun can automatically re-execute run-records later.
They can be identified with any commit-ish (hash, tag, range, ...)

39

http://handbook.datalad.org/en/latest/basics/101-136-filesystem.html

QUESTIONS!
Awkward silence can be bridged with awkward MC questions :)

http://etc.ch/7YEk

40

DROPPING AND REMOVING STUFF
What to do with files you don't want to keep
datalad drop and datalad remove

Code: psychoinformatics-de.github.io/rdm-course/92-filesystem-operations

41

https://psychoinformatics-de.github.io/rdm-course/91-branching

DROP & REMOVE
Try to remove (rm) one of the pictures in your dataset. What happens?
Version control tools keep a revision history of your files -
file contents are not actually removed
when you rm them.
Interactions with the revision history of the dataset can bring them "back to
life"

42

DROP & REMOVE
Clone a small example dataset to drop file contents and remove datasets:

$ datalad clone https://github.com/datalad-datasets/machinelearning-books.git

$ cd machinelearning-books

$ datalad get A.Shashua-Introduction_to_Machine_Learning.pdf

datalad drop removes annexed file contents from a local dataset
annex and frees up disk space.
It is the antagonist of get (which can get files and subdatasets).

$ datalad drop A.Shashua-Introduction_to_Machine_Learning.pdf

drop(ok): /tmp/machinelearning-books/A.Shashua-Introduction_to_Machine_Learning.pdf (file)

 [checking https://arxiv.org/pdf/0904.3664v1.pdf...]

But: Default safety checks require that dropped files can be re-obtained
to prevent accidental
data loss. git annex whereis reports all registered locations
of a file's content
drop does not only operate on individual annexed files,
but also directories, or globs, and it can
uninstall subdatasets:

$ datalad clone https://github.com/datalad-datasets/human-connectome-project-openaccess.git

$ cd human-connectome-project-openaccess

$ datalad get -n HCP1200/996782

$ datalad drop --what all HCP1200/996782

43

