DATALAD - AN INTRODDUCTION

Dr. Adina Wagner

@ mas.to/@adswa

Institute of Neuroscience and Medicine,
Brain & Behavior (INM-7)
Research Center Jilich

IJ JULICH

Forschungszentrum

Slides: DOI 10.5281/zenodo.13806404
files.inm7.de/adina/talks/html/andani.html

https://mas.to/@adswa
https://mas.to/@adswa
https://doi.org/10.5281/zenodo.13806404
https://files.inm7.de/adina/talks/html/helmholtz-reproducibility

DATALAD
(DATALAD.ORE)

(C__)o?ew Souﬂceﬂ
D tRee vV
ATALAD

(

e Domain-agnostic command-line tool (+ graphical user interface), built on top
of Git & Git-annex
e Major features:
Version-controlling arbitrarily large content
Version control data & software alongside to code!
Transport mechanisms for sharing & obtaining data
Consume & collaborate on data (analyses) like software
(Computationally) reproducible data analysis
Track and share provenance of all digital objects
(... and much more)

https://datalad.org/
https://git-scm.com/
https://git-annex.branchable.com/

LET'S TRY DATALAD

&« C O & &2 hitps://datalad-hub.inm7.de/hub/login w © L & 0 G ©

— Jupyterhub

Username:

Password:

For convenience, we work online today:
datalad-hub.inm7.de
username:

The spice or herb you got as a user name
password:

Set at first login, at least 8 characters

On your own machines, Datalad is available via pip, conda, apt, brew; On all
major operating systems: See handbook.datalad.org/r.html?install

https://datalad-hub.inm7.de/
https://handbook.datalad.org/r.html?install

Datalad software
& ecosystem

e Psychoinformatics Lab,

ACKNOWLEDGEMENTS

Funders

\..

NSF 1429999

IJ JULICH

Forschungszentrum

EUROPEAN UNION

European Regional Development Fund

Research center Jilich

e Center for Open
Neuroscience,

Dartmouth College
e Joey Hess (git-annex) Human Brain Project
e >100 additional contributors

SPONSORED BY THE

% Federal Ministry
of Education

and Research

e germany-usa

BMBF 01GQ1411

DFG

Collaborators
f‘ CONP .3
PCNO OpennEURO

eBRAIN Health

a‘a

brainlife.io

7\

MOTOR SFB:

V|rtua|Bra|nC|oud

DATALAD USECASES

FURTHER RESOURCES AND STAY IN TOUCH

If you have questions after the session...

Reach out to to the DatalLad team via
m Matrix (free, decentralized communication app, no app needed). We run a
weekly Zoom office hour (Tuesday, 4pm Berlin time) from this room as well.
= The development repository on GitHub

Reach out to the (Neuro-) user community with
= A question on neurostars.org withadatalad tag

Find more user tutorials or workshop recordings
s On Datalad's YouTube channel
= |nthe DatalLad Handbook
= |n the DatalLad RDM course
m |n the Official APl documentation
= |n anoverview of most tutorials, talks, videos at github.com/datalad/tutorials

https://matrix.to/#/!NaMjKIhMXhSicFdxAj:matrix.org?via=matrix.waite.eu&via=matrix.org&via=inm7.de
https://github.com/datalad/datalad
https://neurostars.org/
https://www.youtube.com/datalad
http://handbook.datalad.org/en/latest/
https://psychoinformatics-de.github.io/rdm-course/
http://docs.datalad.org/
https://github.com/datalad/tutorials

LET'S TRY DATALAD

« - O O B &2 https://datalad-hub.inm7.de/hub/login o7 ® v & @ B @ v =

— Jupyterhub

Username:

Password:

datalad-hub.inm7.de
username;

The spice or herb you got as a user name
password:

Set at first login, at least 8 characters

https://datalad-hub.inm7.de/

GIT IDENTITY SETUP

Check Git identity:

git config —--get user.name

git config —--get user.email

Configure Git identity:

git config --global user.name "Adina Wagner"
git config --global user.email "adina.wagner@t-online.de"

Configure Datalad to use latest features:

git config --global --add datalad.extensions.load next

USING DATALAD IN A TERMINAL

Check the installed version:

datalad --version

For help on using Datalad from the command line:

datalad --help
The help may be displayed in a pager - exit it by pressing "q"

For extensive info about the installed package, its dependencies, and extensions,
use datalad wtf.Let's find out what kind of system we're on:

datalad wtf -S system

USING DATALAD VIA ITS PYTHON API

Open a Python environment:
ipython

Import and start using:

datalad.api dl

dl.create (path="'mydataset')

Exit the Python environment:
exit

DATALAD DATASETS...

O THE DATALAD DATASET

—

- \
. — CO\\\\ . VP\@&E (,6%% \°~C{b° /
= AN o —_
Halqo O

.DATALAD DATASETS

Create a dataset (here, with the yoda configuration, which adds a helpful
structure and configuration for data analyses):

S =

®\
o/

4

¢

‘(,ﬁ)
i

datalad create -c yoda my-analysis

Let's have a look inside. Navigate using cd (change directory):

cd my-analysis

List the directory content, including hidden files, with 1s:
ls -1la .

VERSION CONTROL...
O VERSION CONTROL WITH &GIT

‘ &
BRANCH ADD
B coMMIT MERGE

..JERSION CONTROL

The yoda-configuration added a README placeholder in the dataset. Let's add
Markdown text (a project title) to it:

echo "# My example DatalLad dataset" > README.md

Now we can check the status of the dataset:

datalad status

We can save the state with save

datalad save -m "Add project title into the README"

Further modifications:

echo "Contains a small data analysis for my project" >> README.md

You can also checkout what has changed:
git diff

Save again:

datalad save -m "Add information on the dataset contents to the README"

..JERSION CONTROL

Now, let's check the dataset history:
git log

We can also make the history prettier:
tig copy|

(navigate with arrow keys and enter, press "q" to go back and exit the program)

Convenience functions make downloads easier. Let's add code for a data analysis
from an external source:

datalad download-url -m "Add an analysis script" \
-0 code/classification analysis.py \

https://raw.githubusercontent.com/datalad-handbook/resources/master/classification analysis.py

Check out the file's history:

git log code/classification analysis.py

LOCAL VERSION CONTROL

Procedurally, version control is easy with Datalad!

VZ///' rnodﬁythe

dataset

vl

save
changes in
meaningful

units
datalad save -m "did X" fileT

e Save meaningful units of change
Advice: ¢ Attach helpful commit messages

COMPUTATIONALLY REPRODUCIBLE EXECUTION |...
O EXACT DEYENDENCIES+PROVENANCE

.. GOMPUTATIONALLY REPRODUCIBLE EXECUTION |

A variety of processes can modify files. A simple example: Code formatting

black code/classification analysis.py

Version control makes changes transparent:
git diff

But its useful to keep track beyond that. Let's discard the latest changes...

git restore code/classification analysis.py

...and record precisely what we did

datalad run -m "Reformat code with black" \

"black code/classification analysis.py"

let's take a look:
git show

... and repeat!

datalad rerun

DATA CONSUMPTION & TRANSPORT...

.DATA CONSUMPTION & TRANSPORT...

You can install a dataset from remote URL (or local path) using cLlone. Either as a
stand-alone entity:

datalad clone \

https://github.com/psychoinformatics-de/studyforrest-data-phase2.git

Or as linked dataset, nested in another dataset in a superdataset-subdataset
hierarchy:

datalad clone -d . \
https://github.com/psychoinformatics-de/studyforrest-data-phase2.git

<

Preprocessed V'

Analysis

e Helps with scaling (see e.g. the Human Connectome Project dataset)
e Version control tools struggle with >100k files

e Modular units improves intuitive structure and reuse potential

e Versioned linkage of inputs for reproducibility

https://github.com/datalad-datasets/human-connectome-project-openaccess

.DATASET NESTING

Let's make a nest!
Clone a dataset with analysis data into a specific location ("input/") in the existing

dataset, making it a subdataset:

datalad clone --dataset . \

https://github.com/datalad-handbook/iris data.git \
input/

Let's see what changed in the dataset, using the subdatasets command:

datalad subdatasets

..andalsogit show:
git show

We can now view the cloned dataset's file tree:

cd input

1ls

..and also its history

tig copy

Let's check the dataset size (with the du disk-usage command):

du -sh Copy

Let's check the actual dataset size:

datalad status —--—-annex

Let's check try to print the file contents into the terminal (cat):

cat iris.csv

.DATA CONSUMPTION & TRANSPORT

We canretrieve actual file content with get:
datalad get iris.csv

If we don't need a file locally anymore, we can drop its content:

datalad drop iris.csv

No need to store all files locally, or archive results with Giga/Terra-Bytes of source
data:

dl.get ('input/sub-01")

[really complex analysis]
dl.drop ('input/sub-01")

If data is published anywhere, your data analysis can carry an actionable link to it,
with barely any space requirements.

GIT VERSUS GIT-ANNEX

Data in datasets is either stored in Git or git-annex
By default, everything is annexed, i.e., stored in a dataset annex by git-annex

Git

- dataset history (commit messages,
run records)

- All files + content committ
(useful with code, te

- File identity informati
files (file name, identity ha
locations where to retrieve it fro

e With annexed data, only content identity (hash) and location information is
put into Git, rather than file content. The annex, and transport to and from it is
managed with git-annex

GIT VERSUS GIT-ANNEX

Configurations (e.g., YODA), custom rules, or command parametrization

determines if a file is annexed
Storing files in Git or git-annex has distinct advantages:

Git git-annex

handles small files well (text, code) handles all types and sizes of files well
file contents are in the Git history and will be shared file contents are in the annex. Not
upon git/datalad push necessarily shared

Shared with every dataset clone Can be kept private on a per-file level

when sharing the dataset

Useful: Small, non-binary, frequently modified, need- Useful: Large files, private files
to-be-accessible (DUA, README) files

YODA configures the contents of the code/ directory and the dataset
descriptions (e.g., README files) to be in Git. There are many other
configurations, and you can also write your own.

D / S 4

® \h
o/

¢

o))
I

http://handbook.datalad.org/en/latest/basics/101-123-config2.html
http://handbook.datalad.org/en/latest/basics/101-124-procedures.html

..COMPUTATIONALLY REPRODUCIBLE EXECUTION...

Try to execute the downloaded analysis script. Does it work?

cd ..

python code/classification analysis.py

e Software can be difficult or impossible to install (e.g. conflicts with existing
software, or on HPC) for you or your collaborators

e Different software versions/operating systems can produce different results:
Glatard et al., doi.org/10.3389/fninf.2015.00012

o Software containers encapsulate a software environment and isolate it from a
surrounding operating system. Two common solutions: Docker, Singularity

https://doi.org/10.3389/fninf.2015.00012

.COMPUTATIONALLY REPRODUCIBLE EXECUTION...

e Thedatalad runcanrunanycommand inaway that links the command or
script to the results it produces and the data it was computed from

e Thedatalad rerun cantake thisrecorded provenance and recompute the
command

e Thedatalad containers-run (from the extension "datalad-container")
can capture software provenance in the form of software containers in addition
to the provenance that datalad run captures

..COMPUTATIONALLY REPRODUCIBLE EXECUTION

With the datalad-contailner extension, we can add software containers to
datasets and work with them. Let's add a software container with Python
software to run the script

datalad containers-add python-env --url shub://adswa/resources:2

inspect the list of registered containers:

datalad containers-1list

Now, let's try out the containers- run command:

datalad containers-run -m "run classification analysis in python environment" \
--container-name python-env \
-—input "input/iris.csv" \

—--output "pairwise relationships.png" \
—-—output "prediction report.csv" \
"python3 code/classification analysis.py {inputs} {outputs}"

What changed after the containers-run command has completed?
We canusedatalad diff (basedongit diff):

datalad diff -f HEAD~1

We see that some files were added to the dataset!
And we have a complete provenance record as part of the git history:

git log -n 1

PUBLISHING DATASETS...

j O INTEGRATE AND EXTEND

AU
&\ T o’\‘)P‘
. ‘ @ ‘ 0¥ e
03" pZ0

We will use GIN: gin.g-node.org:

j oum:.ogd oD *
OpenDri “ webservices
AAAAAAAAA v GitLab ﬁ c:" OSF m 0Seaﬂle LD
W Bitbucket O < Jottacloud Dropbox
GitHub ‘

Glac
) OneDrive | flickr

D

Your dataset —,

S
L L8

https://gin.g-node.org/

PUBLISHING DATASETS...

e Create a GIN user account and log in: gin.g-node.org/user/sign_up

e Create an SSH key

ssh-keygen -t ed25519 -C "your-email"

eval "$(ssh-agent -s)"

ssh-add ~/.ssh/id ed25519

e upload the SSH key to GIN

ﬁ Dashboard

Settings
Profile

Avatar
Password

Email Addresses
SSH Keys

Securitv

Pull Requests Q, Explore @ Help News + -

-
Manage SSH Keys

This is a list of S5H keys associated with your account. As these keys allow anyone using them to gain access to
your repositories, it is highly important that you make sure you recognize them.

o) private laptop
SHAZ256:alG7pJosAS3T06hIUSgrM7 2+xfk0apCHT1V3ZjSkk
Added on Jan 06, 2020 — @ Last used on Nov 17, 2020

Don't know how? Check out GitHub's guide to create your own S5H keys or solve common problems you might
encounter using SSH.

e Publish your dataset!

https://gin.g-node.org/user/sign_up
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent?platform=linux
https://handbook.datalad.org/en/latest/basics/101-139-gin.html#prerequisites

.PUBLISHING DATASETS

Datalad has convenience functions to create sibling-repositories on various
infrastructure and third party services (GitHub, GitLab, OSF, WebDAV-based
services, DataVerse, ...), to which data can then be published with push.

datalad create-sibling-gin example-analysis —--access-protocol ssh

You can verify the dataset's siblings with the siblings command:

datalad siblings
And we can push our complete dataset (Git repository and annex) to GIN:
datalad push --to gin

In case of fire A

-o- 1. git commit
(datalad save)

ﬁ 2. git push
(datalad push)
4-8 3. leave building

USING PUBLISHED DATA...

Let's see how the analysis feels like to others:

cd ../
datalad clone \

https://gin.g-node.org/adswa/example-analysis \

myclone

cd myclone

Get results:

datalad get prediction report.csv

datalad drop prediction report.csv

Or recompute results:

datalad rerun

THE YODA PRINCIPLES

DATALAD DATASETS FOR DATA ANALYSIS

o A Datalad dataset can have any structure, and use as many or few features of a dataset as
required.

e However, for data analyses it is beneficial to make use of Datalad features and structure
datasets according to the YODA principles:

N\ T X £
o o
SN

3

9 P1: One thing, one dataset

u"‘ P2: Record where you got it from, and where it is now
P3: Record what you did to it, and with what

Find out more about the YODA principles in the handbook, and more about structuring dataset at psychoinformatics-de.github.io/rdm
course/02-structuring-data

http://handbook.datalad.org/en/latest/basics/101-127-yoda.html
https://psychoinformatics-de.github.io/rdm-course/02-structuring-data/index.html#example-structure-yoda-principles
https://psychoinformatics-de.github.io/rdm-course/02-structuring-data/index.html#example-structure-yoda-principles

P1: ONE THING, ONE DATASET

e Create modular datasets: Whenever a particular collection of files could
anyhow be useful in more than one context (e.g. data), put them in their own
dataset, and install it as a subdataset.

e Keep everything structured: Bundle all components of one analysis into one
superdataset, and within this dataset, separate code, data, output, execution
environments.

o Keep adataset self-contained, with relative paths in scripts to subdatasets or
files. Do not use absolute paths.

WHY MODULARITY?

e 1. Reuse and access management
e 2.Scalability

e 3. Transparency

Original:

/dataset

F—— samplel
| L— a001.dat

F—— sample?
| L— a001.dat

Without modularity, after applied transform (preprocessing, analysis, ...):

/dataset

F—— samplel

| F—— ps34t.dat
| L— a001.dat
F—— sample?

| F—— ps34t.dat
| L— a001.dat

Without expert/domain knowledge, no distinction between original and derived
data possible.

WHY MODULARITY?

e 3. Transparency

Original:

/raw_dataset

|—— samplel
| L — a001.dat

|—— sample?
| L— a001.dat

With modularity after applied transform (preprocessing, analysis, ...)

/derived dataset
|—— samplel
| L — ps34t.dat
|—— sample?
| L — ps34t.dat

...

L inputs

L raw
|—— samplel
| L a001.dat

|—— sample?
| L a001.dat

Clearer separation of semantics, through use of pristine version of original
dataset within a new, additional dataset holding the outputs.

WHEN TO MODULARIZE?

Target audience is different

= publicvs. private
= domain specific vs. domain general

Pace of evolution is different

= "factual" raw data vs. choices of (pre-)processing
= completed acquisition vs. ongoing study

Size impacts |/O and logistics

= Git can struggle with 1M+ files

= filesystems (licensing) can struggle with large numbers of inodes
= More infos: Go Big or Go Home chapter

Legal/Access constraints

= personal vs. anonymized data

http://handbook.datalad.org/en/latest/beyond_basics/basics-scaling.html

P2: RECORD WHERE YOU GOT IT FROM, AND WHERE IT IS NOW

e Link individual datasets to declare data-dependencies (e.g. as subdatasets).
e Record data's origin with appropriate commands, for example to record access

URLSs for individual files obtained from (unstructured) sources "in the cloud".
e Share and publish datasets for collaboration or back-up.

?

DATASET LINKAGE

vl

Subdataset references in a dataset are

extremely lightweight, yet guarantee data
identity via cryptographic hashes.
Subdatasets can be detached without losing
this information, yielding massively improved

storage efficiency and reduced archive costs.

$ datalad clone --dataset . http://example.com/ds inputs/rawdata

$ git diff HEAD~1

new file mode 100644

+ [submodule "inputs/rawdata']
+ path = inputs/rawdata
+ url = http://example.com/importantds

new file mode 160000

@@ -0,0 +1 (@
+Subproject commit fabf8521130a13986bd6493cb33a70e580ce8572

Each (sub)dataset is a separately, but jointly version-controlled entity. If none of
its datais retrieved, subdatasets are an extremely lightweight data dependency
and yet actionable (datalad get retrieves contents on demand)

P3: RECORD WHAT YOU DID TO IT, AND WITH WHAT

'D,fj. Oy
ey

<

g™

e Collect and store provenance of all contents of a dataset that you create

e "Which script produced which output?”, "From which data?", "In which software
environment?" ... Record it in an ideally machine-readable way with datalad
(containers-)run

TAKE HOME MESSAGES

What does Datalad add to Git and git-annex?
Simple(r) core API to unify Git and git-annex functionality
Ability to record provenance
Support for software container solutions (Singularity, Docker)
Subdatasets and linkage with a mono-repo-like user-experience
Interoperability adapters to publish to a variety of hosting services
Open Data Distribution: To date, more than 600TB of open neuro data are
available via via datasets.datalad.org

https://datasets.datalad.org/

THANK YOU FOR YOUR ATTENTION!

Slides: DOI 10.5281/zen0d0.10118794 (Scan the QR code)

meen . Women neuroscientists are underrepresented in neuroscience. You can use the
l n Repository for Women in Neuroscience to find and recommend neuroscientists for
N e u r. 0 S c i e n c e conferences, symposia or collaborations, and help making neuroscience more open & divers.

https://doi.org/10.5281/zenodo.10118794
https://onlinelibrary.wiley.com/doi/full/10.1111/ejn.14397
https://www.winrepo.org/

COMMAND SUMMARIES

SUMMARY - LOCAL VERSION CONTROL

datalad create creates an empty dataset.
Configurations (-c yoda, -c text2git) add useful structure and/or
configurations.

A dataset has a history to track files and their modifications.
Explore it with Git (git log) or external tools (e.g., tig).

datalad saverecords the dataset or file state to the history.
Concise commit messages should summarize the change for future you and
others.

datalad download-url obtains web content and records its origin.
It even takes care of saving the change.

datalad status reportsthe current state of the dataset.

A clean dataset status (no modifications, not untracked files) is good practice.

SUMMARY - DATASET CONSUMPTION & NESTING

datalad cloneinstalls a dataset.

It can be installed “on its own”: Specify the source (url, path, ...) of the dataset,
and an optional path for it to be installed to.

Datasets can be installed as subdatasets within an existing dataset.
The --dataset/-d option needs a path to the root of the superdataset.

Only small files and metadata about file availability are present locally after
an install.

To retrieve actual file content of annexed files,datalad get downloads
file content on demand.

Datasets preserve their history.
The superdataset records only the version state of the subdataset.

SUMMARY - REPRODUCIBLE EXECUTION

datalad runrecords acommand and its impact on the dataset.
All dataset modifications are saved - use it in a clean dataset.

Data/directories specified as - -1nput are retrieved prior to command

execution.
Use one flag per input.

Data/directories specified as - -output will be unlocked for modifications

prior to a rerun of the command.
Its optional to specify, but helpful for recomputations.

datalad containers-run can be used to capture the software

environment as provenance.
Its ensures computations are ran in the desired software set up. Supports
Docker and Singularity containers

datalad reruncanautomatically re-execute run-records later.
They can be identified with any commit-ish (hash, tag, range, ...)

