
DATALAD - AN INTRODDUCTION
Dr. Adina Wagner

Institute of Neuroscience and Medicine,
Brain & Behavior (INM-7)
Research Center Jülich

Slides:

 mas.to/@adswa

DOI 10.5281/zenodo.13806404
files.inm7.de/adina/talks/html/andani.html

1

https://mas.to/@adswa
https://mas.to/@adswa
https://doi.org/10.5281/zenodo.13806404
https://files.inm7.de/adina/talks/html/helmholtz-reproducibility

DATALAD
()

Domain-agnostic command-line tool (+ graphical user interface), built on top
of &
Major features:
Version-controlling arbitrarily large content

Version control data & software alongside to code!
Transport mechanisms for sharing & obtaining data

Consume & collaborate on data (analyses) like software
(Computationally) reproducible data analysis

Track and share provenance of all digital objects
(... and much more)

DATALAD.ORG

Git Git-annex

2

https://datalad.org/
https://git-scm.com/
https://git-annex.branchable.com/

LET'S TRY DATALAD

For convenience, we work online today:

username:
The spice or herb you got as a user name

password:
Set at first login, at least 8 characters

On your own machines, DataLad is available via pip, conda, apt, brew; On all
major operating systems: See

datalad-hub.inm7.de

handbook.datalad.org/r.html?install

3

https://datalad-hub.inm7.de/
https://handbook.datalad.org/r.html?install

ACKNOWLEDGEMENTS

DataLad software
& ecosystem
Psychoinformatics Lab,
Research center Jülich
Center for Open
Neuroscience,
Dartmouth College
Joey Hess (git-annex)
>100 additional contributors

Funders

Collaborators

4

DATALAD USECASES

5

FURTHER RESOURCES AND STAY IN TOUCH
If you have questions after the session...

Reach out to to the DataLad team via
 (free, decentralized communication app, no app needed). We run a

weekly Zoom office hour (Tuesday, 4pm Berlin time) from this room as well.

Reach out to the (Neuro-) user community with
A question on with a datalad tag

Find more user tutorials or workshop recordings
On
In the
In the
In the
In an overview of most tutorials, talks, videos at

Matrix

The development repository on GitHub

neurostars.org

DataLad's YouTube channel
DataLad Handbook
DataLad RDM course
Official API documentation

github.com/datalad/tutorials

6

https://matrix.to/#/!NaMjKIhMXhSicFdxAj:matrix.org?via=matrix.waite.eu&via=matrix.org&via=inm7.de
https://github.com/datalad/datalad
https://neurostars.org/
https://www.youtube.com/datalad
http://handbook.datalad.org/en/latest/
https://psychoinformatics-de.github.io/rdm-course/
http://docs.datalad.org/
https://github.com/datalad/tutorials

LET'S TRY DATALAD

username:
The spice or herb you got as a user name

password:
Set at first login, at least 8 characters

datalad-hub.inm7.de

7

https://datalad-hub.inm7.de/

GIT IDENTITY SETUP
Check Git identity:

git config --get user.name

git config --get user.email

copy

Configure Git identity:

git config --global user.name "Adina Wagner"

git config --global user.email "adina.wagner@t-online.de"

copy

Configure DataLad to use latest features:

git config --global --add datalad.extensions.load next copy

8

USING DATALAD IN A TERMINAL
Check the installed version:

datalad --version copy

For help on using DataLad from the command line:

datalad --help

The help may be displayed in a pager - exit it by pressing "q"

copy

For extensive info about the installed package, its dependencies, and extensions,
use datalad wtf. Let's find out what kind of system we're on:

datalad wtf -S system copy

9

USING DATALAD VIA ITS PYTHON API
Open a Python environment:

ipython copy

Import and start using:

import datalad.api as dl

dl.create(path='mydataset')

copy

Exit the Python environment:

exit copy

10

DATALAD DATASETS...

11

...DATALAD DATASETS
Create a dataset (here, with the yoda configuration, which adds a helpful
structure and configuration for data analyses):

datalad create -c yoda my-analysis copy

Let's have a look inside. Navigate using cd (change directory):

cd my-analysis copy

List the directory content, including hidden files, with ls:

ls -la . copy

12

VERSION CONTROL...

13

...VERSION CONTROL
The yoda-configuration added a README placeholder in the dataset. Let's add
Markdown text (a project title) to it:

echo "# My example DataLad dataset" > README.md copy

Now we can check the status of the dataset:

datalad status copy

We can save the state with save

datalad save -m "Add project title into the README" copy

Further modifications:

echo "Contains a small data analysis for my project" >> README.md copy

You can also checkout what has changed:

git diff copy

Save again:

datalad save -m "Add information on the dataset contents to the README" copy

14

...VERSION CONTROL
Now, let's check the dataset history:

git log copy

We can also make the history prettier:

tig

(navigate with arrow keys and enter, press "q" to go back and exit the program)

copy

Convenience functions make downloads easier. Let's add code for a data analysis
from an external source:

datalad download-url -m "Add an analysis script" \

 -O code/classification_analysis.py \

 https://raw.githubusercontent.com/datalad-handbook/resources/master/classification_analysis.py

copy

Check out the file's history:

git log code/classification_analysis.py copy

15

LOCAL VERSION CONTROL
Procedurally, version control is easy with DataLad!

save
changes in
meaningful

 units

modify the
dataset

datalad save -m "did X" file1

Advice:
Save meaningful units of change
Attach helpful commit messages

16

COMPUTATIONALLY REPRODUCIBLE EXECUTION I...

which script/pipeline version
was run on which version of the data
to produce which version of the results?

17

... COMPUTATIONALLY REPRODUCIBLE EXECUTION I
A variety of processes can modify files. A simple example: Code formatting

black code/classification_analysis.py copy

Version control makes changes transparent:

git diff copy

But its useful to keep track beyond that. Let's discard the latest changes...

git restore code/classification_analysis.py copy

... and record precisely what we did

datalad run -m "Reformat code with black" \

 "black code/classification_analysis.py"

copy

let's take a look:

git show copy

... and repeat!

datalad rerun copy

18

DATA CONSUMPTION & TRANSPORT...

19

...DATA CONSUMPTION & TRANSPORT...
You can install a dataset from remote URL (or local path) using clone. Either as a
stand-alone entity:

just an example:

datalad clone \

https://github.com/psychoinformatics-de/studyforrest-data-phase2.git

copy

Or as linked dataset, nested in another dataset in a superdataset-subdataset
hierarchy:

just an example:

datalad clone -d . \

https://github.com/psychoinformatics-de/studyforrest-data-phase2.git

copy

Helps with scaling (see e.g. the)
Version control tools struggle with >100k files
Modular units improves intuitive structure and reuse potential
Versioned linkage of inputs for reproducibility

Human Connectome Project dataset

20

https://github.com/datalad-datasets/human-connectome-project-openaccess

...DATASET NESTING
Let's make a nest!
Clone a dataset with analysis data into a specific location ("input/") in the existing
dataset, making it a subdataset:

datalad clone --dataset . \

 https://github.com/datalad-handbook/iris_data.git \

 input/

copy

Let's see what changed in the dataset, using the subdatasets command:

datalad subdatasets copy

... and also git show:

git show copy

21

We can now view the cloned dataset's file tree:

cd input

ls

copy

...and also its history

tig copy

Let's check the dataset size (with the du disk-usage command):

du -sh copy

Let's check the actual dataset size:

datalad status --annex copy

Let's check try to print the file contents into the terminal (cat):

cat iris.csv copy

22

...DATA CONSUMPTION & TRANSPORT
We can retrieve actual file content with get:

datalad get iris.csv copy

If we don't need a file locally anymore, we can drop its content:

datalad drop iris.csv copy

No need to store all files locally, or archive results with Giga/Terra-Bytes of source
data:

If data is published anywhere, your data analysis can carry an actionable link to it,
with barely any space requirements.

dl.get('input/sub-01')

[really complex analysis]

dl.drop('input/sub-01')

copy

23

GIT VERSUS GIT-ANNEX
Data in datasets is either stored in Git or git-annex

By default, everything is annexed, i.e., stored in a dataset annex by git-annex

Git
- dataset history (commit messages,
 run records)
- All files + content committed into Git
 (useful with code, text, ...)
- File identity information of all annexed
 files (file name, identity hash, storage
 locations where to retrieve it from)

git-annex
- contents of annexed files
- organized in the "annex" or "object tree"
 of the dataset

With annexed data, only content identity (hash) and location information is
put into Git, rather than file content. The annex, and transport to and from it is
managed with git-annex

24

GIT VERSUS GIT-ANNEX
Configurations (e.g., YODA), custom , or command parametrization
determines if a file is annexed

Storing files in Git or git-annex has distinct advantages:

Git git-annex

handles small files well (text, code) handles all types and sizes of files well

file contents are in the Git history and will be shared
upon git/datalad push

file contents are in the annex. Not
necessarily shared

Shared with every dataset clone Can be kept private on a per-file level
when sharing the dataset

Useful: Small, non-binary, frequently modified, need-
to-be-accessible (DUA, README) files

Useful: Large files, private files

rules

YODA configures the contents of the code/ directory and the dataset
descriptions (e.g., README files) to be in Git. There are many other

configurations, and you can also .write your own

25

http://handbook.datalad.org/en/latest/basics/101-123-config2.html
http://handbook.datalad.org/en/latest/basics/101-124-procedures.html

...COMPUTATIONALLY REPRODUCIBLE EXECUTION...
Try to execute the downloaded analysis script. Does it work?

cd ..

python code/classification_analysis.py

copy

Software can be difficult or impossible to install (e.g. conflicts with existing
software, or on HPC) for you or your collaborators
Different software versions/operating systems can produce different results:
Glatard et al., doi.org/10.3389/fninf.2015.00012
Software containers encapsulate a software environment and isolate it from a
surrounding operating system. Two common solutions: Docker, Singularity

26

https://doi.org/10.3389/fninf.2015.00012

...COMPUTATIONALLY REPRODUCIBLE EXECUTION...
The datalad run can run any command in a way that links the command or
script to the results it produces and the data it was computed from
The datalad rerun can take this recorded provenance and recompute the
command
The datalad containers-run (from the extension "datalad-container")
can capture software provenance in the form of software containers in addition
to the provenance that datalad run captures

27

...COMPUTATIONALLY REPRODUCIBLE EXECUTION
With the datalad-container extension, we can add software containers to
datasets and work with them. Let's add a software container with Python
software to run the script

datalad containers-add python-env --url shub://adswa/resources:2 copy

inspect the list of registered containers:

datalad containers-list copy

Now, let's try out the containers-run command:

datalad containers-run -m "run classification analysis in python environment" \

 --container-name python-env \

 --input "input/iris.csv" \

 --output "pairwise_relationships.png" \

 --output "prediction_report.csv" \

 "python3 code/classification_analysis.py {inputs} {outputs}"

copy

What changed after the containers-run command has completed?
We can use datalad diff (based on git diff):

datalad diff -f HEAD~1 copy

We see that some files were added to the dataset!
And we have a complete provenance record as part of the git history:

git log -n 1 copy

28

PUBLISHING DATASETS...

We will use GIN: :gin.g-node.org

Your dataset

work stations
& servers

Repository hosting
services

Third party
storage providers

29

https://gin.g-node.org/

PUBLISHING DATASETS...
Create a GIN user account and log in:

 an SSH key

 the SSH key to GIN

Publish your dataset!

gin.g-node.org/user/sign_up
Create

ssh-keygen -t ed25519 -C "your-email"

eval "$(ssh-agent -s)"

ssh-add ~/.ssh/id_ed25519

upload

cat ~/.ssh/id_ed25519.pub

30

https://gin.g-node.org/user/sign_up
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent?platform=linux
https://handbook.datalad.org/en/latest/basics/101-139-gin.html#prerequisites

...PUBLISHING DATASETS
DataLad has convenience functions to create sibling-repositories on various
infrastructure and third party services (GitHub, GitLab, OSF, WebDAV-based
services, DataVerse, ...) , to which data can then be published with push.

datalad create-sibling-gin example-analysis --access-protocol ssh copy

You can verify the dataset's siblings with the siblings command:

datalad siblings copy

And we can push our complete dataset (Git repository and annex) to GIN:

datalad push --to gin copy

31

USING PUBLISHED DATA...
Let's see how the analysis feels like to others:

cd ../

datalad clone \

 https://gin.g-node.org/adswa/example-analysis \

 myclone

copy

cd myclone copy

Get results:

datalad get prediction_report.csv copy

datalad drop prediction_report.csv copy

Or recompute results:

datalad rerun copy

32

THE YODA PRINCIPLES

33

DATALAD DATASETS FOR DATA ANALYSIS
A DataLad dataset can have any structure, and use as many or few features of a dataset as
required.
However, for data analyses it is beneficial to make use of DataLad features and structure
datasets according to the YODA principles:

P1: One thing, one dataset
P2: Record where you got it from, and where it is now
P3: Record what you did to it, and with what

Find out more about the YODA principles in , and more about structuring dataset at the handbook psychoinformatics-de.github.io/rdm-
course/02-structuring-data

34

http://handbook.datalad.org/en/latest/basics/101-127-yoda.html
https://psychoinformatics-de.github.io/rdm-course/02-structuring-data/index.html#example-structure-yoda-principles
https://psychoinformatics-de.github.io/rdm-course/02-structuring-data/index.html#example-structure-yoda-principles

P1: ONE THING, ONE DATASET

Create modular datasets: Whenever a particular collection of files could
anyhow be useful in more than one context (e.g. data), put them in their own
dataset, and install it as a subdataset.
Keep everything structured: Bundle all components of one analysis into one
superdataset, and within this dataset, separate code, data, output, execution
environments.
Keep a dataset self-contained, with relative paths in scripts to subdatasets or
files. Do not use absolute paths.

35

WHY MODULARITY?
1. Reuse and access management
2. Scalability
3. Transparency

Original:

/dataset

├── sample1

│ └── a001.dat

├── sample2

│ └── a001.dat

...

Without modularity, after applied transform (preprocessing, analysis, ...):

Without expert/domain knowledge, no distinction between original and derived
data possible.

/dataset

├── sample1

│ ├── ps34t.dat

│ └── a001.dat

├── sample2

│ ├── ps34t.dat

│ └── a001.dat

...

36

WHY MODULARITY?
3. Transparency

Original:

With modularity after applied transform (preprocessing, analysis, ...)

Clearer separation of semantics, through use of pristine version of original
dataset within a new, additional dataset holding the outputs.

/raw_dataset

├── sample1

│ └── a001.dat

├── sample2

│ └── a001.dat

...

/derived_dataset

├── sample1

│ └── ps34t.dat

├── sample2

│ └── ps34t.dat

├── ...

└── inputs

 └── raw

 ├── sample1

 │ └── a001.dat

 ├── sample2

 │ └── a001.dat

 ...

37

WHEN TO MODULARIZE?
Target audience is different

public vs. private
domain specific vs. domain general

Pace of evolution is different

"factual" raw data vs. choices of (pre-)processing
completed acquisition vs. ongoing study

Size impacts I/O and logistics

Git can struggle with 1M+ files
filesystems (licensing) can struggle with large numbers of inodes
More infos:

Legal/Access constraints

personal vs. anonymized data

Go Big or Go Home chapter

38

http://handbook.datalad.org/en/latest/beyond_basics/basics-scaling.html

P2: RECORD WHERE YOU GOT IT FROM, AND WHERE IT IS NOW

Link individual datasets to declare data-dependencies (e.g. as subdatasets).
Record data's origin with appropriate commands, for example to record access
URLs for individual files obtained from (unstructured) sources "in the cloud".
Share and publish datasets for collaboration or back-up.

39

DATASET LINKAGE

Each (sub)dataset is a separately, but jointly version-controlled entity. If none of
its data is retrieved, subdatasets are an extremely lightweight data dependency

and yet actionable (datalad get retrieves contents on demand)

$ datalad clone --dataset . http://example.com/ds inputs/rawdata copy

$ git diff HEAD~1

diff --git a/.gitmodules b/.gitmodules

new file mode 100644

index 0000000..c3370ba

--- /dev/null

+++ b/.gitmodules

@@ -0,0 +1,3 @@

+[submodule "inputs/rawdata"]

+ path = inputs/rawdata

+ url = http://example.com/importantds

diff --git a/inputs/rawdata b/inputs/rawdata

new file mode 160000

index 0000000..fabf852

--- /dev/null

+++ b/inputs/rawdata

@@ -0,0 +1 @@

+Subproject commit fabf8521130a13986bd6493cb33a70e580ce8572

copy

40

P3: RECORD WHAT YOU DID TO IT, AND WITH WHAT

Collect and store provenance of all contents of a dataset that you create
"Which script produced which output?", "From which data?", "In which software
environment?" ... Record it in an ideally machine-readable way with datalad
(containers-)run

41

TAKE HOME MESSAGES
What does DataLad add to Git and git-annex?

Simple(r) core API to unify Git and git-annex functionality
Ability to record provenance
Support for software container solutions (Singularity, Docker)
Subdatasets and linkage with a mono-repo-like user-experience
Interoperability adapters to publish to a variety of hosting services
Open Data Distribution: To date, more than 600TB of open neuro data are
available via via datasets.datalad.org

42

https://datasets.datalad.org/

THANK YOU FOR YOUR ATTENTION!

Slides: (Scan the QR code)

Women neuroscientists are . You can use the
 to find and recommend neuroscientists for

conferences, symposia or collaborations, and help making neuroscience more open & divers.

DOI 10.5281/zenodo.10118794

underrepresented in neuroscience
Repository for Women in Neuroscience

43

https://doi.org/10.5281/zenodo.10118794
https://onlinelibrary.wiley.com/doi/full/10.1111/ejn.14397
https://www.winrepo.org/

COMMAND SUMMARIES

44

SUMMARY - LOCAL VERSION CONTROL
datalad create creates an empty dataset.

Configurations (-c yoda, -c text2git) add useful structure and/or
configurations.

A dataset has a history to track files and their modifications.
Explore it with Git (git log) or external tools (e.g., tig).

datalad save records the dataset or file state to the history.
Concise commit messages should summarize the change for future you and
others.

datalad download-url obtains web content and records its origin.
It even takes care of saving the change.

datalad status reports the current state of the dataset.
A clean dataset status (no modifications, not untracked files) is good practice.

45

SUMMARY - DATASET CONSUMPTION & NESTING
datalad clone installs a dataset.

It can be installed “on its own”: Specify the source (url, path, ...) of the dataset,
and an optional path for it to be installed to.

Datasets can be installed as subdatasets within an existing dataset.
The --dataset/-d option needs a path to the root of the superdataset.

Only small files and metadata about file availability are present locally after
an install.

To retrieve actual file content of annexed files, datalad get downloads
file content on demand.

Datasets preserve their history.
The superdataset records only the version state of the subdataset.

46

SUMMARY - REPRODUCIBLE EXECUTION
datalad run records a command and its impact on the dataset.

All dataset modifications are saved - use it in a clean dataset.

Data/directories specified as --input are retrieved prior to command
execution.

Use one flag per input.

Data/directories specified as --output will be unlocked for modifications
prior to a rerun of the command.

Its optional to specify, but helpful for recomputations.

datalad containers-run can be used to capture the software
environment as provenance.

Its ensures computations are ran in the desired software set up. Supports
Docker and Singularity containers

datalad rerun can automatically re-execute run-records later.
They can be identified with any commit-ish (hash, tag, range, ...)

47

