
AN INTRODUCTION TO DATALAD
Adina Wagner

,
Institute of Neuroscience and Medicine, Brain & Behavior (INM-7)
Research Center Jülich

Slides: (Scan the QR code)
Online Slides:

 mas.to/adswa

Psychoinformatics lab

DOI 10.5281/zenodo.10369776
files.inm7.de/adina/talks/html/osoh.html

1

https://twitter.com/AdinaKrik
https://twitter.com/AdinaKrik
http://psychoinformatics.de/
https://doi.org/10.5281/zenodo.10369776
https://files.inm7.de/adina/talks/html/osoh.html

LECTURE + LIVE CODING
Live-demonstration of DataLad examples and workflows
Materials incl. copy-paste code snippets and hands-on exercises at
handbook.datalad.org/r.html?osoh

2

https://handbook.datalad.org/r.html?osoh

3

THE SAME, BUT FOR DATA:

(Yes, 13 TB of data. Yes, real-life example)

4

HELP! GIT TO THE RESCUE?
Sadly, Git does not handle large files well.

And repository hosting services refuse to handle large files:

5

A command-line tool, available for all major operating systems (Linux,
macOS/OSX, Windows), MIT-licensed
Build on top of and
Allows...
... version-controlling arbitrarily large content

version control data and software alongside to code!
... transport mechanisms for sharing and obtaining data

consume and collaborate on data (analyses) like software
... (computationally) reproducible data analysis

Track and share provenance of all digital objects
... and much more
Completely domain-agnostic

Git Git-annex

6

https://git-scm.com/
https://git-annex.branchable.com/

EXAMPLES OF WHAT DATALAD CAN BE USED FOR:

7

EXAMPLES OF WHAT DATALAD CAN BE USED FOR:
Behind-the-scenes infrastructure component for data transport and
versioning (e.g., used by , , the

,)
OpenNeuro brainlife.io Canadian Open

Neuroscience Platform (CONP) CBRAIN

8

https://openneuro.org/
https://brainlife.io/
https://conp.ca/
https://conp.ca/
https://mcin.ca/technology/cbrain/

EXAMPLES OF WHAT DATALAD CAN BE USED FOR:
Creating and sharing reproducible, open science: Sharing data, software, code,
and provenance

9

EXAMPLES OF WHAT DATALAD CAN BE USED FOR:

10

EXAMPLES OF WHAT DATALAD CAN BE USED FOR:

11

USING DATALAD
DataLad can be used from the command line

... or with its Python API

... or with a slimmed-down

datalad create mydataset

import datalad.api as dl

dl.create(path="mydataset")

graphical user interface
... and other programming languages can use it via system call

in R

> system("datalad create mydataset")

12

https://github.com/datalad/datalad-gooey/

DATALAD DATASETS
DataLad's core data structure

Dataset = A directory managed by DataLad
Any directory of your computer can be managed by DataLad.

A DataLad dataset is a joined Git + git-annex repository

13

DISTRIBUTED VERSION CONTROL FOR DATA

14

DISTRIBUTED VERSION CONTROL FOR DATA

Git
- dataset history (commit messages,
 run records)
- All files + content committed into Git
 (useful with code, text, ...)
- File identity information of all annexed
 files (file name, identity hash, storage
 locations where to retrieve it from)

git-annex
- contents of annexed files
- organized in the "annex" or "object tree"
 of the dataset

15

VERSION CONTROL
DataLad knows two things: Datasets and files

 or transform existing directories into datasets

create new, empty datasets to populate...

% datalad create

% datalad create -f

save

changes

modify the

dataset

version 1

version 2

version 3

% datalad save

Every file you put into a in a dataset can be easily version-controlled,
regardless of size, with the same command.

16

LOCAL VERSION CONTROL
Procedurally, version control is easy with DataLad!

save
changes in
meaningful

 units

modify the
dataset

datalad save -m "did X" file1

Advice:
Save meaningful units of change
Attach helpful commit messages

17

THIS MEANS: YOU CAN ALSO VERSION CONTROL DATA!
$ datalad save \

 -m "Adding raw data from neuroimaging study 1" \

 sub-*

 add(ok): sub-1/anat/T1w.json (file)

 add(ok): sub-1/anat/T1w.nii.gz (file)

 add(ok): sub-1/anat/T2w.json (file)

 add(ok): sub-1/anat/T2w.nii.gz (file)

 add(ok): sub-1/func/sub-1-run-1_bold.json (file)

 add(ok): sub-1/func/sub-1-run-1_bold.nii.gz (file)

 add(ok): sub-10/anat/T1w.json (file)

 add(ok): sub-10/anat/T1w.nii.gz (file)

 add(ok): sub-10/anat/T2w.json (file)

 add(ok): sub-10/anat/T2w.nii.gz (file)

 [110 similar messages have been suppressed]

 save(ok): . (dataset)

 action summary:

 add (ok: 120)

 save (ok: 1)

copy

18

VERSION CONTROL
Your dataset can be a complete research log, capturing everything that was
done, when, by whom, and how

Interact with the history:

reset your dataset (or subset of it) to a previous state,

throw out changes or bring them back,

find out what was done when, how, why, and by whom

Identify precise versions: Use data in the most recent version, or the one from
2018, or...

...

19

SUMMARY - LOCAL VERSION CONTROL
datalad create creates an empty dataset.

Configurations (-c yoda, -c text2git) are useful (details soon).

A dataset has a history to track files and their modifications.
Explore it with Git (git log) or external tools (e.g., tig).

datalad save records the dataset or file state to the history.
Concise commit messages should summarize the change for future you and
others.

datalad status reports the current state of the dataset.
A clean dataset status (no modifications, not untracked files) is good practice.

20

CONSUMING DATASETS
A dataset can be created from scratch/existing directories:

but datasets can also be installed from paths or from URLs:

$ datalad create mydataset

[INFO] Creating a new annex repo at /home/adina/mydataset

create(ok): /home/adina/mydataset (dataset)

$ datalad clone https://github.com/datalad-datasets/human-connectome-project-openac

install(ok): /tmp/HCP (dataset)

21

DATASET NESTING
Typically, Git repositories are cumbersome to link to eachother. DataLad
provides seamless nesting mechanisms:

Paper
B

Raw
data

Analysis
A

Paper
A

Analysis
B

Preprocessed

Nest modular datasets to create a linked hierarchy of datasets,
and enable recursive operations throughout the hierarchy

Modularizes research components for transparency, reuse, and access
management
Overcomes scaling issues with large amounts of files

adina@bulk1 in /ds/hcp/super on git:master❱ datalad status --annex -r

 15530572 annex'd files (77.9 TB recorded total size)

 nothing to save, working tree clean

(github.com/datalad-datasets/human-connectome-project-openaccess)

22

https://github.com/datalad-datasets/human-connectome-project-openaccess

DATASET NESTING

1

1

23

DATALAD: DATASET LINKAGE

1

1

$ datalad clone --dataset . http://example.com/ds inputs/rawdata copy

$ git diff HEAD~1

diff --git a/.gitmodules b/.gitmodules

new file mode 100644

index 0000000..c3370ba

--- /dev/null

+++ b/.gitmodules

@@ -0,0 +1,3 @@

+[submodule "inputs/rawdata"]

+ path = inputs/rawdata

+ url = http://example.com/importantds

diff --git a/inputs/rawdata b/inputs/rawdata

new file mode 160000

index 0000000..fabf852

--- /dev/null

+++ b/inputs/rawdata

@@ -0,0 +1 @@

+Subproject commit fabf8521130a13986bd6493cb33a70e580ce8572

copy

24

BASIC ORGANIZATIONAL PRINCIPLES FOR DATASETS
Keep everything clean and modular

An analysis is a superdataset, its components are subdatasets, and its
structure modular

do not touch/modify raw data: save any results/computations outside of input
datasets
Keep a superdataset self-contained: Scripts reference subdatasets or files with
relative paths

├── code/

 │ ├── tests/

 │ └── myscript.py

 ├── docs

 │ ├── build/

 │ └── source/

 ├── envs

 │ └── Singularity

 ├── inputs/

 │ └─── data/

 │ ├── dataset1/

 │ │ └── datafile

 │ └── dataset2/

 │ └── datafile

 ├── outputs/

 │ └── important_result

 │ └── figures/

 └── README.md

25

BASIC ORGANIZATIONAL PRINCIPLES FOR DATASETS
Record where you got it from, where it is now, and what you do to it

Link datasets (as subdatasets), record data origin
Collect and store provenance of all contents of a dataset that you create

Document everything:
Which script produced which output? From which data? In which software

environment? ...Find out more about organizational principles in !the YODA principles

26

file:///home/adina/repos/datalad-course/html/osoh.html?print-pdf

PLENTY OF DATA, BUT LITTLE DISK-USAGE
Cloned datasets are lean. "Meta data" (file names, availability) are present, but
no file content:

$ datalad clone git@github.com:psychoinformatics-de/studyforrest-data-phase2.git

 install(ok): /tmp/studyforrest-data-phase2 (dataset)

 $ cd studyforrest-data-phase2 && du -sh

 18M .

file's contents can be retrieved on demand:

$ datalad get sub-01/ses-movie/func/sub-01_ses-movie_task-movie_run-1_bold.nii.gz

 get(ok): /tmp/studyforrest-data-phase2/sub-01/ses-movie/func/sub-01_ses-movie_task-movie_run-1

copy

Have more access to your computer than you have disk-space:

eNKI dataset (1.5TB, 34k files):

$ du -sh

 1.5G .

HCP dataset (80TB, 15 million files)

$ du -sh

 48G .

copy

27

PLENTY OF DATA, BUT LITTLE DISK-USAGE
Drop file content that is not needed:

$ datalad drop sub-01/ses-movie/func/sub-01_ses-movie_task-movie_run-1_bold.nii.gz

drop(ok): /tmp/studyforrest-data-phase2/sub-01/ses-movie/func/sub-01_ses-movie_task-movie_run-1_

copy

When files are dropped, only "meta data" stays behind, and they can be re-
obtained on demand. This allows disk-space aware computations:

Install your input data

➡ get the data you need

➡ compute your results

➡ drop input data (and potentially all automatically re-computable results)
dl.get('input/sub-01')

[really complex analysis]

dl.drop('input/sub-01')

copy

28

GIT VERSUS GIT-ANNEX
Data in datasets is either stored in Git or git-annex

By default, everything is annexed, i.e., stored in a dataset annex by git-annex

Git
- dataset history (commit messages,
 run records)
- All files + content committed into Git
 (useful with code, text, ...)
- File identity information of all annexed
 files (file name, identity hash, storage
 locations where to retrieve it from)

git-annex
- contents of annexed files
- organized in the "annex" or "object tree"
 of the dataset

With annexed data, only content identity (hash) and location information is
put into Git, rather than file content. The annex, and transport to and from it is
managed with git-annex

29

GIT VERSUS GIT-ANNEX
Git and Git-annex handle files differently: annexed files are stored in an annex. File

content is hashed & only content-identity is committed to Git.

Files stored in Git are modifiable,
files stored in git-annex are content-
locked

Annexed contents are not available
right after cloning, only content
identity and availability information
(as they are stored in Git). Everything
that is annexed is retrieved on
demand with datalad get.

files given to Git-annex
are write-protected

files given to Git are
not write-protected

modifications can
 be done right away

modifications need
 prior unlocking

Read for details. :)this handbook chapter

30

http://handbook.datalad.org/en/latest/basics/101-115-symlinks.html

GIT VERSUS GIT-ANNEX
Users can decide which files are annexed:

Pre-made run-procedures, provided by DataLad (e.g., text2git, yoda) or
created and shared by users ()
Self-made configurations in .gitattributes (e.g., based on file type, file/path
name, size, ...;)
Per-command basis (e.g., via datalad save --to-git)

Tutorial

rules and examples

31

http://handbook.datalad.org/en/latest/basics/101-124-procedures.html
http://handbook.datalad.org/en/latest/basics/101-123-config2.html#gitattributes

SUMMARY - DATASET CONSUMPTION & NESTING
datalad clone installs a dataset.

It can be installed “on its own”: Specify the source (url, path, ...) of the dataset,
and an optional path for it to be installed to.

Datasets can be installed as subdatasets within an existing dataset.
The --dataset/-d option needs a path to the root of the superdataset.

Only small files and metadata about file availability are present locally after
an install.

To retrieve actual file content of annexed files, datalad get downloads
file content on demand.

Datasets preserve their history.
The superdataset records only the version state of the subdataset.

32

REPRODUCIBLE DATA ANALYSIS
Your past self is the worst collaborator:

Im
ag

e
cr

ed
it

: F
u

ll
co

m
ic

 a
t

h
tt

p
:/

/p
h

d
co

m
ic

s.
co

m
/c

o
m

ic
s.

p
h

p
?f

=
1

9
7

9

33

http://phdcomics.com/comics.php?f=1689

REPRODUCIBLE EXECUTION & PROVENANCE CAPTURE
datalad run

save all
modifications
of the dataset

- human-readable
 commit message

 - machine-readable
run-record

unlock
output files

for modification
--outputget input data

--input

1

2

2

1

Reproducible execution:

link input, code, and output with
datalad run

datalad run -m "did XY"

34

DATALAD RERUN
datalad rerun is helpful to spare others and yourself the short- or long-term
memory task, or the forensic skills to figure out how you performed an analysis
But it is also a digital and machine-readable provenance record
Important: The better the run command is specified, the better the provenance
record
Note: run and rerun only create an entry in the history if the command
execution leads to a change.

35

COMPUTATIONALLY REPRODUCIBLE EXECUTION & PROVENANCE
CAPTURE

Code may fail (to reproduce) if run with different software
Datasets can store (and share) software environments (Docker or Singularity
containers) and reproducibly execute code inside of the software container,
capturing software as additional provenance
DataLad extension: datalad-container

save all
modifications
of the dataset

unlock
output files

for modification
--output

get input data
--input

1

2

2

1

link input, code, output, and software with
datalad containers-run

datalad containers-run

get and use registered software
container for computation
--container-name

</>

36

SUMMARY - REPRODUCIBLE EXECUTION
datalad download-url obtains web content & records its origin.

It even takes care of saving the change.

datalad run records a command and its impact on the dataset.
All dataset modifications are saved - use it in a clean dataset.

Data/directories specified as --input are retrieved prior to command
execution.

Use one flag per input.

Data/directories specified as --output will be unlocked for modifications
prior to a rerun of the command.

Its optional to specify, but helpful for recomputations.

datalad containers-run can be used to capture the software
environment as provenance.

Its ensures computations are ran in the desired software set up. Supports
Docker and Singularity containers

datalad rerun can automatically re-execute run-records later.
They can be identified with any commit-ish (hash, tag, range, ...)

37

INTEROPERABILITY
DataLad is built to maximize interoperability and use with hosting and storage
technology

38

INTEROPERABILITY
DataLad is built to maximize interoperability and use with hosting and storage
technology

39

PUBLISHING DATASETS
I have a dataset on my computer. How can I share it, or collaborate on it?

General information:

Your dataset

work stations
& servers

Repository hosting
services

Third party
storage providers

handbook.datalad.org/r.html?publish

Today: Publishing a dataset to Gin
40

http://handbook.datalad.org/r.html?publish
http://handbook.datalad.org/r.html?GIN

GIN.G-NODE.ORG
 is a free repository hosting service.Gin

41

https://gin.g-node.org/

...PUBLISHING DATASETS
DataLad has convenience functions to create sibling-repositories on various
infrastructure and third party services (GitHub, GitLab, OSF, WebDAV-based
services, DataVerse, ...) , to which data can then be published with push.

datalad create-sibling-gin example-analysis --access-protocol ssh copy

You can verify the dataset's siblings with the siblings command:

datalad siblings copy

And we can push our complete dataset (Git repository and annex) to GIN:

datalad push --to gin copy

42

STEP-BY-STEP: WEBINTERFACE

43

STEP-BY-STEP: COMMAND LINE

44

WHY USE DATALAD?
Mistakes are not forever anymore: Easy version control, regardless of file size
Who needs short-term memory when you can have run-records?
Disk-usage magic: Have access to more data than your hard drive has space
Collaboration and updating mechanisms: Alice shares her data with Bob. Alice
fixes a mistake and pushes the fix. Bob says "datalad update" and gets her
changes. And vice-versa.
Transparency: Shared datasets keep their history. No need to track down a
former student, ask their project what was done.

45

ACKNOWLEDGEMENTS

DataLad software
& ecosystem
Psychoinformatics Lab,
Research center Jülich
Center for Open
Neuroscience,
Dartmouth College
Joey Hess (git-annex)
>100 additional contributors

Funders

Collaborators

46

UNLOCKING THINGS
datalad run "unlocks" everything specified as --output
Outside of datalad run, you can use datalad unlock
This makes annex'ed files writeable:

$ ls -l myfile

lrwxrwxrwx 1 adina adina 108 Nov 17 07:08 myfile -> .git/annex/objects/22/Gw/MD5E-s7--f447b20a7

unlocking

$ datalad unlock myfile

unlock(ok): myfile (file)

$ ls -l myfile

-rw-r--r-- 1 adina adina 7 Nov 17 07:08 myfile # not a symlink anymore!

copy

datalad save "locks" the file again

$ datalad save

add(ok): myfile (file)

action summary:

 add (ok: 1)

 save (notneeded: 1)

$ ls -l myfile

lrwxrwxrwx 1 adina adina 108 Nov 17 07:08 myfile -> .git/annex/objects/22/Gw/MD5E-s7--f447b20a7f

copy

Some tools (e.g., MatLab) don't like symlinks. Unlocking or running matlab with
"datalad run" helps!

47

REMOVING DATASETS
As mentioned before, annexed data is write-protected. So when you try to rm -
rf a dataset, this happens:

😱

$ rm -rf mydataset

rm: cannot remove 'mydataset/.git/annex/objects/70/GM/MD5E-s27246--8b7ea027f6db1cda7af496e97d4eb

rm: cannot remove 'mydataset/.git/annex/objects/70/GM/MD5E-s35756--af496e97d4eb7c98b7ea027f6db1c

[...]

copy

(If you accidentally ever do this, you need to apply write permissions
recursively to all files)

$ chmod -R +w mydataset

$ rm -rf mydataset # success!

48

REMOVING DATASETS
The correct way to remove a dataset is using datalad remove:

$ datalad remove -d ds001241

remove(ok): . (dataset)

action summary:

 drop (notneeded: 1)

 remove (ok: 1)

copy

If a dataset contains file for which no other remote copy is known, you'll get a
warning:

$ datalad remove -d mydataset

[WARNING] Running drop resulted in stderr output: git-annex: drop: 1 failed

[ERROR] unsafe; Could only verify the existence of 0 out of 1 necessary copies; Rather than dr

drop(error): interdisciplinary.png (file) [unsafe; Could only verify the existence of 0 out of 1

[WARNING] could not drop some content in /tmp/mydataset ['/tmp/mydataset/interdisciplinary.png']

drop(impossible): . (directory) [could not drop some content in /tmp/mydataset ['/tmp/mydataset/

action summary:

 drop (error: 1, impossible: 1)

copy

In that case, use --nocheck to force removal:

$ datalad remove -d mydataset --nocheck 1 !

remove(ok): . (dataset)

copy

49

REMOVING DATASETS
If a dataset contains subdatasets, datalad remove will also error:

$ datalad remove -d myds

drop(ok): README.md (file) [locking gin...]

drop(ok): . (directory)

[ERROR] to be uninstalled dataset Dataset(/tmp/myds) has present subdatasets, forgot --recursiv

remove(error): . (dataset) [to be uninstalled dataset Dataset(/tmp/myds) has present subdatasets

action summary:

 drop (ok: 3)

 remove (error: 1)

copy

In that case, use --recursive to remove all subdatasets, too:

$ datalad remove -d myds --recursive

uninstall(ok): input (dataset)

remove(ok): . (dataset)

action summary:

 drop (notneeded: 2)

 remove (ok: 1)

 uninstall (ok: 1)

copy

A complete overview of file system operations is in
handbook.datalad.org/en/latest/basics/101-136-filesystem.html

50

http://handbook.datalad.org/en/latest/basics/101-136-filesystem.html

